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Abstract

The prediction of extreme events, from avalanches and droughts to tsunamis and epidem-
ics, depends on the formulation and analysis of relevant, complex dynamical systems. Such
dynamical systems are characterized by high intrinsic dimensionality with extreme events
having the form of rare transitions that are several standard deviations away from the mean.
Such systems are not amenable to classical order-reduction methods through projection of
the governing equations due to the large intrinsic dimensionality of the underlying attractor
as well as the complexity of the transient events. Alternatively, data-driven techniques aim
to quantify the dynamics of specific, critical modes by utilizing data-streams and by expand-
ing the dimensionality of the reduced-order model using delayed coordinates. In turn, these
methods have major limitations in regions of the phase space with sparse data, which is the
case for extreme events. In this work, we develop a novel hybrid framework that comple-
ments an imperfect reduced order model, with data-streams that are integrated though a
recurrent neural network (RNN) architecture. The reduced order model has the form of pro-
jected equations into a low-dimensional subspace that still contains important dynamical
information about the system and it is expanded by a long short-term memory (LSTM) regu-
larization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect
model and the data-streams, projected to the reduced-order space. The data-driven model
assists the imperfect model in regions where data is available, while for locations where
data is sparse the imperfect model still provides a baseline for the prediction of the system
state. We assess the developed framework on two challenging prototype systems exhibiting
extreme events. We show that the blended approach has improved performance compared
with methods that use either data streams or the imperfect model alone. Notably the
improvement is more significant in regions associated with extreme events, where data is
sparse.
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Introduction

Extreme events are omnipresent in important problems in science and technology such as tur-
bulent and reactive flows [1, 2], Kolmogorov [3] and unstable plane Couette flow [4]), geo-
physical systems (e.g. climate dynamics [5, 6], cloud formations in tropical atmospheric
convection [7, 8]), nonlinear optics [9, 10] or water waves [11-13]), and mechanical systems
(e.g. mechanical metamaterials [14, 15]).

The complete description of these system through the governing equations is often chal-
lenging either because it is very hard/expensive to solve these equations with an appropriate
resolution or due to the magnitude of the model errors. The very large dimensionality of their
attractor in combination with the occurrence of important transient, but rare events, makes
the application of classical order-reduction methods a challenging task. Indeed, classical Galer-
kin projection methods encounter problems as the truncated degrees-of-freedom are often
essential for the effective description of the system due to high underlying intrinsic dimension-
ality. On the other hand, purely data-driven, non-parametric methods such as delay embed-
dings [16-21], equation-free methods [22, 23], Gaussian process regression based methods
[24], or recurrent neural networks based approaches [25] may not perform well when it comes
to rare events, since the training data-sets typically contain only a small number of the rare
transient responses. The same limitations hold for data-driven, parametric methods [26-29],
where the assumed analytical representations have parameters that are optimized so that the
resulted model best fits the data. Although these methods perform well when the system oper-
ates within the main ‘core’ of the attractor, this may not be the case when rare and/or extreme
events occur.

We propose a hybrid method for the formulation of a reduced-order model that combines
an imperfect physical model with available data streams. The proposed framework is impor-
tant for the non-parametric description, prediction and control of complex systems whose
response is characterized by both i) high-dimensional attractors with broad energy spectrum
distributed across multiple scales, and ii) strongly transient non-linear dynamics such as
extreme events.

We focus on data-driven recurrent neural networks (RNN) with a long-short term mem-
ory (LSTM) [30] that represents some of the truncated degrees-of-freedom. The key concept
of our work is the observation that while the imperfect model alone has limited descriptive
and prediction skills (either because it has been obtained by a radical reduction or it is a
coarse-grid solution of the original equations), it still contains important information espe-
cially for the instabilities of the system, assuming that the relevant modes are included in the
truncation. However, these instabilities need to be combined with an accurate description of
the nonlinear dynamics within the attractor and this part is captured in the present frame-
work by the recurrent neural network. Note, that embedding theorems [31, 32] make the
additional memory of the RNN to represent dimensions of the system that have been trun-
cated, a property that provides an additional advantage in the context of reduced-order
modeling [20, 25].

We note that such blended model-data approaches have been proposed previously in other
contexts. In [33, 34], a hybrid forecasting scheme based on reservoir computing in conjunction
with knowledge-based models are successfully applied to prototype spatiotemporal chaotic
systems. In [35-37] the linearized dynamics were projected to low-dimensional subspaces and
were combined with additive noise and damping that were rigorously selected to represent the
effects nonlinear energy fluxes from the truncated modes. The developed scheme resulted in
reduced-order stochastic models that efficiently represented the second order statistics in the
presence of arbitrary external excitation. In [38] a deep neural network architecture was
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developed to reconstruct the near-wall flow field in a turbulent channel flow using suitable
wall only information. These nonlinear near-wall models can be integrated with flow solvers
for the parsimonious modeling and control of turbulent flows [39-42]. In [43] a framework
was introduced wherein solutions from intermediate models, which capture some physical
aspects of the problem, were incorporated as solution representations into machine learning
tools to improve the predictions of the latter, minimizing the reliance on costly experimental
measurements or high-resolution, high-fidelity numerical solutions. [44] design a stable adap-
tive control strategy using neural networks for physical systems for which the state dependence
of the dynamics is reasonably well understood, but the exact functional form of this depen-
dence, or part thereof, is not, such as underwater robotic vehicles and high performance air-
craft. In [29, 45-47] neural nets are developed to simultaneously learn the solution of the
model equations using data. In these works that only a small number of scalar parameters is
utilized to represent unknown dynamics, while the emphasis is given primarily on the learning
of the solution, which is represented through a deep neural network. In other words, it is
assumed that a family of models that ‘lives’ in a low-dimensional parameter space can capture
the correct response. Such a representation is not always available though. Here our goal is

to apply such a philosophy on the prediction of complex systems characterized by high
dimensionality and strongly transient dynamics. We demonstrate the developed strategy in
prototype systems exhibiting extreme events and show that the hybrid strategy has important
advantages compared with either purely data-driven methods or those relying on reduced-
order models alone.

Materials and methods

We consider a nonlinear dynamical system with state variable u € R and dynamics given by

du_ F(u) = Lu + h(u), (1)
dt
where F : R — R is a deterministic, time-independent operator with linear and nonlinear
parts L and h respectively. We are specifically interested in systems whose dynamics results in
a non-trivial, globally attracting manifold S C R? to which trajectories quickly decay. The
intrinsic dimension of § is presumably much less than d.

In traditional Galerkin-based reduced-order model [48] one typically uses an ansatz of the
form

u=YE+Zn+b, (2)

where the columns of matrix Y = [yy,. . .,¥,,] form an orthonormal basis of Y, an m-dimen-
sional subspace of R, and the columns of Z = [z,,. . .,Z4_,,] make up an orthonormal basis for
the orthogonal complement Z = R\ Y; £ and # are the projection coordinates associated
with Y and Z; b is an offset vector typically made equal to the attractor mean state. This linear
expansion allows reduction to take place through special choices of subspace Y and Z, as well
as their corresponding basis. For example, the well-known proper orthogonal decomposition
(POD) derives the subspace empirically to be such that the manifold S preserves its variance as
much as possible when projected to Y (or equivalently, minimizing the variance when pro-
jected to Z), given a fixed dimension constraint m.
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We show that such a condition enables reduction, by substituting Eq (2) into Eq (1) and
projecting onto Y and Z respectively to obtain two coupled systems of differential equations:

% =Y'LY{+Y'LZn+ Y'h(YE+Zn+b) + Y'Lb
(3)
Z—'t’ =Z'LYE+Z'LZn+ Z"h(YE + Zn +b) + Z'Lb.

If on average || < |€|, we may make the approximation that 7 = 0, leading to a m-dimensional
system (ideally m < d)

s _ o1 r r

E:Y LYS + Y h(YE +b) + Y'Lb = F.(&), (4)
which can be integrated in time. This is known as the flat Galerkin method. The solution to Eq
(1) is approximated by u =~ Y& + b.

Using (4) as an approximation to Eq (1) is known to suffer from a number of problems.
First, the dimension m of the reduction subspace Y may be too large for |17] ~ 0 to hold true.
Second, the subspace Z is derived merely based on statistical properties of the manifold with-
out addressing the dynamics. This implies that even if 77 has small magnitude on average it
may play a big role in the dynamics of the high-energy space (e.g. acting as buffers for energy
transfer between modes [49]). Neglecting such dimensions in the description of the system
may alter its dynamical behaviors and compromise the ability of the model to generate reliable
forecasts.

An existing method that attempts to address the truncation effect of the  terms is the non-
linear Galerkin projection [48, 50], which expresses 1 as a function of &:

yielding a reduced system
Z—f =Y'LYS + Y'LZ®(E) + Y'h(YE + Z®(E) + b) + Y'Lb. (6)

The problems boils down to finding @, often empirically. Unfortunately, ® is well-defined
only when the inertial manifold § is fully parametrized by dimensions of Y (see Fig 1), which is
a difficult condition to achieve for most systems under a reasonable m. Even if the condition is
met, how to systematically find @ remains a big challenge.

Data-assisted reduced-order modeling

In this section we introduce a new framework for improving the reduced-space model that
assists, with data streams, the nonlinear Galerkin method. Our main idea relies on building an
additional data-driven model from data series observed in the reduction space to assist the
equation-based model Eq (4).

We note that the exact dynamics of & can be written as

s _

= E(9) + G, )

where Fy is defined in Eq (4) and G : R” x R*" — R" encompasses the coupling between &
and 17. We will refer to v = G(&, ) as the complementary dynamics since it can be thought of as
a correction that complements the flat Galerkin dynamics Fy.
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projection

—» true § dynamics
—» flat Galerkin
—» nonlinear Galerkin

Fig 1. Geometric illustration of flat and nonlinear Galerkin projected dynamics in R?. 3D manifold S living in (&), &, m,) is projected to 2D
plane parametrized by (&;, &,). Parametrization is assumed to be imperfect, i.e. out-of-plane coordinate 7; cannot be uniquely determined from
(&1, &). Flat Galerkin method always uses the dynamics corresponding to 77, = 0. Nonlinear Galerkin method uses the dynamics corresponding
to 7y = @(&), &) where @ is determined by some prescribed criterion (e.g. minimization of L2 error).

https://doi.org/10.1371/journal.pone.0197704.9001

The key step of our framework is to establish a data-driven model G to approximate G:
'I’(t) = G(é(t)v 71(1‘)) ~ G(&(t)a g(t - T)v g(t - 2‘[)7 i ) (8)

where &(t), &(t — 7),. . . are uniformly time-lagged states in & up to a reference initial condition.
The use of delayed £ states makes up for the fact that Y may not be a perfect parametrization
subspace for S. The missing state information not directly accessible from within Y is instead
inferred from these delayed & states and then used to compute y. This model form is motivated
by the embedding theorems developed by Whitney [31] and Takens [32], who showed that the
attractor of a deterministic, chaotic dynamical system can be fully embedded using delayed
coordinates.

We use the long short-term memory (LSTM) [30], a regularization of recurrent neural net-
work (RNN), as the fundamental building block for constructing G. The LSTM has been
recently deployed successfully for the formulation of fully data-driven models for the predic-
tion of complex dynamical systems [25]. Here we employ the same strategy to model the com-
plementary dynamics while we preserve the structure of the projected equations. LSTM takes
advantage of the sequential nature of the time-delayed reduced space coordinates by process-
ing the input in chronological order and keeping memory of the useful state information that
complements & at each time step. An overview of the RNN model and the LSTM is given in S1
Appendix.

Building from LSTM units, we use two different architectures to learn the complementary
dynamics from data. The first architecture reads a sequence of £ states, i.e. states projected to
the d-dimensional subspace and outputs the corresponding sequence of complementary
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dynamics. The second architecture reads an input sequence and integrate the output dynamics
to predict future. The details of both architectures are described below.

Data series. Both architectures are trained and tested on the same data set consisting of N
data series, where N is assumed to be large enough such that the low-order statistics of S are
accurately represented. Each data series is a sequence of observed values in reduced space Y,
with strictly increasing and evenly spaced observation times. Without loss of generality, we
assume that all data series have the same length. Moreover, the observation time spacing 7 is
assumed to be small so that the true dynamics at each step of the series can be accurately esti-
mated with finite difference. We remark that for single-step prediction (architecture I below)
increasing 7 (while keeping the number of steps constant) is beneficial for training as it reduces
the correlation between successive inputs. However, for multi-step prediction (architecture II),
large 7 incurs integration errors which quickly outweigh the benefit of having decorrelated
inputs. Hence, we require small 7 in data.

Architecture I.  We denote an input sequence of length-p as {§;,. . ..§,} and the corre-
sponding finite-difference interpolated dynamics as {&,, . .., ‘g"P}. A forward pass in the first
architecture works as follows (illustrated in Fig 2I). At time step i, input &; is fed into a LSTM
cell with np gy hidden states, which computes its output h; based on the received input and its
previous memory states (initialized to zero). The LSTM output is then passed through an
intermediary fully-connected (FC) layer with ngc hidden states and rectified linear unit
(ReLU) activations to the output layer at desired dimension m. Here h; is expected to contain
state information of the unobserved 1 at time step i, reconstructed effectively as a function of
all previous observed states {€1, . . ., &_;}. The model output is a predicted sequence of comple-
mentary dynamics {/,, ..., ¥,}.

Optionally, h; can be concatenated with LSTM input &; to make up the input to the FC
layer. The concatenation is necessary when 7y g is small relative to m. Under such condi-
tions, the LSTM hidden states h; are more likely trained to represent 7; alone, as opposed to
(&, 11;) combined. &; thus needs to be seen by the FC layer in order to have all elements neces-
sary in order to estimate y. If the LSTM cell has sufficient room to integrate incoming input
with memory (i.e. number of hidden units larger than the intrinsic dimensionality of the
attractor), the concatenation may be safely ignored.

In the case of models with lower complexity for faster learning a small 1y g1y is preferred.
However, finding the minimum working #; gy, which is expected to approach the intrinsic
attractor dimension, is a non-trivial problem. Therefore, it is sometimes desirable to conserva-
tively choose n;grm. In this case the LSTM unit is likely to have sufficient cell capacity to inte-
grate incoming input with memory, rendering the input concatenation step unnecessary.

The model is trained by minimizing a loss function with respect to the weights of the LSTM
cell and FC layer. The loss function is defined as a weighted sum of the mean squared error
(MSE) of the complementary dynamics:

)4

L= wllw -l ©)

i=1

where y, = &, — F, (&) is the true complementary dynamics at step i. Note that for this archi-
tecture it is equivalent to defining the loss based on MSE of the total dynamics. For weights w;

we use a step profile:

0<i<
W, = {Wo 1S p, (10)
1 p <i<p,
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LSTM m LSTM ]: :1 LSTM E:[ LSTM

X

prediction stage

|[¢——— setup stage —]

Fig 2. Computational graph for model architecture I and II. Yellow nodes are input provided to the network corresponding to sequence of
states and blue nodes are prediction targets corresponding to the complementary dynamics (plus states for architecture II). Blocks labeled ‘FC’
are fully-connected layers with ReLU activations. Dashed arrows represent optional connections depending on the capacity of LSTM relative to
the dimension of &. Both architectures share the same set of trainable weights. For architecture I, predictions are made as input is read; input is
always accurate regardless of any prediction errors made in previous steps. This architecture is used only for training. Architecture II makes
prediction in a sequence-to-sequence (setup sequence to prediction sequence) fashion. Errors made early do impact all predictions that follow.
This architecture is used for fine-tuning weights and multi-step-ahead prediction.

https://doi.org/10.1371/journal.pone.0197704.9002

where wy < 1 is used to weight the first p, steps when the LSTM unit is still under the transient
effects of the cell states being initialized to zero. Predictions made during this period is there-
fore valued much less. In practice, p; is usually negatively correlated with the parametrization
power of the reduction subspace Y and can be determined empirically. For optimization we
use the gradient-based Adam optimizer [51] (also described in S1 Appendix) with early stop-
ping. The gradient is calculated for small batches of data series (batch size #,,) and across
the entire training data for #, epochs.

A notable property of this model architecture is that input representing the reduced state is
always accurate regardless of any errors made in predicting the dynamics previously. This is
undesirable especially for chaotic systems where errors tend to grow exponentially. Ideally, the
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model should be optimized with respect to the cumulative effects of the prediction errors. To
this end, this architecture is primarily used for pre-training and a second architecture is uti-
lized for fine-tuning and multi-step-ahead prediction.

Architecture II.  The second architecture bears resemblance to the sequence-to-sequence
(seq2seq) models which have been widely employed for natural language processing tasks [52,
53]. It consists of two stages (illustrated in Fig 2II): a set-up stage and a prediction stage. The
set-up stage has the same structure as architecture I, taking as input a uniformly spaced
sequence of s reduced-space states which we call {&_,,, & ¢.,. . ., &}. No output, however, is
produced until the very last step. This stage acts as a spin-up such that zero initializations to
the LSTM memory no longer affects prediction of dynamics at the beginning of the next stage.
The output of the set-up stage is a single prediction of the complementary dynamics ¥, corre-
sponding to the last state of the input sequence and the ending LSTM memory states. This
dynamics is combined with F¢(&) to give the total dynamics at &,. The final state and dynamics

are passed to an integrator to obtain the first input state of the prediction stage él. During the
prediction stage, complementary dynamics is predicted iteratively based on the newest state
prediction and the LSTM memory content before combined with F; dynamics to generate the
total dynamics and subsequently the next state. After p prediction steps, the output of the

model is obtained as a sequence of predicted states {f;" Lreees ?;:P} and a sequence of comple-
mentary dynamics {y/,,..., ¥, }.
For this architecture we define the loss function as

p ~ .
L:ZWi||V7i+F5(§i)_§i|‘2- (11)

This definition is based on MSE of the total dynamics so that the model learns to ‘cooperate’
with the projected dynamics F;. For weights we use an exponential profile:

w,=79"0<i<p (12)

where 0 < y < 1is a pre-defined ratio of decay. This profile is designed to counteract the expo-
nentially growing nature of the errors in a chaotic system and prevent exploding gradients.
Similar to architecture I, training is performed in batches using the Adam algorithm.

Architecture II, in contrast with the architecture I, finishes reading the entire input
sequence before producing the prediction sequence. For this reason it is suitable for running
multi-step-ahead predictions. Both architectures, however, share the same set of trainable
weights used to estimate the complementary dynamics. Hence, we can utilize architecture I as
a pre-training facility for architecture II because it tends to have smaller gradients (as errors do
not accumulate over time steps) and thus faster convergence. This idea is very similar to
teacher forcing method used to accelerate training (see [54]). On the other hand, architecture
IT is much more sensitive to the weights. Gradients tend to be large and only small learning
rates can be afforded. For more efficient training, it is therefore beneficial to use architecture I
to find a set of weights that already work with reasonable precision and perform fine-tuning
with architecture II. In addition, the p, parameter for architecture I also provides a baseline for
the set-up stage length s to be used for architecture II.

Another feature of architecture II is that the length of its prediction stage can be arbitrary.
Shorter length limits the extent to which errors can grow and renders the model easier to train.
In practice we make sequential improvements to the model weights by progressively increasing
the length p of the prediction stage.
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Table 1. Summary of hyperparameters for data-driven model architectures.

Category Symbol Hyperparameter Architecture
Layers nLsT™ number of hidden units, LSTM layer I1&II
NEC number of hidden units, fully connected layer [&II
Series s number of time steps, set-up stage II
p number of time steps, prediction stage [&II
T time step I1&II
Loss Pt length of transient (low-weight) period I
Wo transient weight 1
y weight decay II
Training Mbatch batch size [&II
Hep number of epochs [ &II
n, B, B learning rate and momentum control I1&II

https://doi.org/10.1371/journal.pone.0197704.t001

For convenience, the hyperparameters involved in each architecture are summarized in
Table 1.

Fully data-driven modeling

Both of the proposed architectures can be easily adapted for a fully data-driven modeling
approach (see [25]): for architecture I the sequence of total dynamics {&, ... ,& ,} is used as
the training target in place of the complementary dynamics and for architecture II the FC layer
output is directly integrated to generate the next state. Doing so changes the distribution of
model targets and implicitly forces the model to learn more. For comparison, we examine the
performance of this fully data-driven approach through the example applications in the follow-
ing section.

Results and discussion
A chaotic intermittent low-order atmospheric model

We consider a chaotic intermittent low-order atmospheric model, the truncated Charney-
DeVore (CDV) equations, developed to model barotropic flow in a S-plane channel with orog-
raphy. The model formulation used herein is attributed to [55, 56], and employs a slightly dif-
ferent scaling and a more general zonal forcing profile than the original CDV. Systems
dynamics are governed by the following ordinary differential equations:

xl = V{x3 - C(xl - x;‘), Xz = _(al'xl - BI)XS - CxQ - 51x4x6a
Xy = (o) = Py)xy =y, — Cxy +0,2,%5, %, = 755 — Clx, — x7) + &(x,5 — x3%;),  (13)
Xy = — (0%, = By)x — Cx5 — 0yx,x;, Xg = (0% — By)xg — 7%, — Cxg + 6,%,%,,

where the model coefficients are given by

PLOS ONE | https://doi.org/10.1371/journal.pone.0197704 May 24,2018
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Fig 3. CDV system. (A) 10* points sampled from the CDV attractor, projected to (x3, x4) plane. (B) Example time series for x;; blocked flow
regime is shaded in red. (C) Length-2000 trajectory projected to the first two POD modes (normalized) integrated using the CDV model (left),
5-mode POD projected model (middle) and data-assisted model (right). Despite preserving 99.6% of the total variance, the 5-mode projected
model has a single fixed point as opposed to a chaotic attractor. Data-assisted model, however, is able to preserve the geometric features of the
original attractor.

https://doi.org/10.1371/journal.pone.0197704.9003

for m = 1, 2. Here we examine the system at a fixed set of parameters

(x7,x;,C, B,7,b) = (0.95,—-0.76095,0.1, 1.25, 0.2, 0.5), which is found to demonstrate cha-
otic intermittent transitions between zonal and blocked flow regime, caused by the combina-
tion of topographic and barotropic instabilities [55, 56]. These highly transient instabilities
render this model an appropriate test case for evaluating the developed methodology. The two
distinct regimes are manifested through x, and x4 (Fig 3A and 3B).

For reduction of the system we attempt the classic proper orthogonal decomposition
(POD) whose details are described in S1 Appendix. The basis vectors of the projection sub-
space are calculated using the method of snapshots on a uniformly sampled time series of
length 10,000 obtained by integrating Eq (13). The first five POD modes collectively account
for 99.6% of the total energy. However, despite providing respectable short-term prediction
accuracy, projecting the CDV system to its most energetic five modes completely changes the
dynamical behavior and results in a single globally attracting fixed point instead of a strange
attractor. The difference between exact and projected dynamics can be seen in terms of the
two most energetic POD coefficients, &, &, in Fig 3C (left and middle subplots).

In the context of our framework, we construct a data-assisted reduced-order model that
includes the dynamics given by the 5-mode POD projection. We set ny gy = 1 (because one
dimension is truncated) and ngc = 16. Input to the FC layer is a concatenation of LSTM output
and reduced state because ny gty = 1 is sufficient to represent the truncated mode. Data is

PLOS ONE | https://doi.org/10.1371/journal.pone.0197704 May 24,2018 10/22
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obtained as 10,000 trajectories, each with p = 200 and 7= 0.01. We use 80%, 10%, 10% for
training, validation and testing respectively. For this setup it proves sufficient, based on empir-
ical evidence, to train the assisting data-driven model with Architecture I for 1000 epochs,
using a batch size of 250. The trained weights are plugged in architecture II to generate sequen-
tial predictions. As we quantify next, it is observed that (a) the trajectories behave much like
the 6-dimensional CDV system in the long term by forming a similar attractor, as shown in
Fig 3C, and (b) the short-term prediction skill is boosted significantly.

We quantify the improvement in prediction performance by using two error metrics—root
mean squared error (RMSE) and correlation coefficient. For comparison we also include pre-
diction errors when using a purely data-driven model based on LSTM. RMSE in ith reduced
dimension is computed as

RMSE (1) = [ (E7(6) £ ()%, i=1,..m, (15)

where & (1)) and £ (t,) represent the truth and prediction for the nth test trajectory at
prediction lead time #; respectively. The results are plotted in Fig 4. We end remark that the
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Fig 4. Results for CDV system. (Row 1) RMSE vs. lead time for 5-mode POD projected model (orange dotted), data-assisted model (blue
dashdotted) and purely data-driven model (green dashed). (Row 2) ACC vs. lead time. (Row 3) A sample trajectory corresponding to zonal
flow—true trajectory is shown (black solid). (Row 4) A sample trajectory involving regime transition (happening around ¢ = 20). For rows 1, 3
and 4, plotted values are normalized by the standard deviation of each dimension.

https://doi.org/10.1371/journal.pone.0197704.9004
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predictions obtained by the proposed data-assisted model are significantly better than the pro-
jected model, as well as than the purely data-driven approach. Low error levels are maintained
by the present approach even when the other methods under consideration exhibit significant
errors.

The anomaly correlation coefficient (ACC) [57] measures the correlation between anoma-
lies of forecasts and those of the truth with respect to a reference level and is defined as

where &, is the reference level set to the observation average by default. ACC takes a maximum
value of 1 if the variation pattern of the anomalies of forecast is perfectly coincident with that
of truth and a minimum value of -1 if the pattern is completely reversed. Again, the proposed
method is able to predict anomaly variation patterns which are almost perfectly correlated
with the truth at very large lead times when the predictions made by the compared methods
are mostly uncorrelated (Fig 4—second row).

In the third and fourth rows of Fig 4 we illustrate the improvement that we obtain with the
data-assisted approach throughout the systems attractor, i.e. in both zonal and blocked
regimes. In the third row of Fig 4 the flow in the zonal regime is shown and in the fourth row
we demonstrate the flow transitions into the blocked regime around ¢ = 20. In both cases, the
data-assisted version clearly improves the prediction accuracy.

We emphasize that the presence of the equation-driven part contributes largely to the long-
term stability (vs. purely data driven models) while the data-driven part serves to improve the
short-term prediction accuracy. These two ingredients of the dynamics complement each
other favorably in achieving great prediction performance. In addition, the data-assisted
approach successfully produces a chaotic structure that is similar to the one observed in the
full-dimensional system, a feat that cannot be replicated by either methods using equation or
data alone.

Intermittent bursts of dissipation in Kolmogorov flow

We consider the two-dimensional incompressible Navier-Stokes equations

du=-u-Vu—-Vp+vAu+f

V-u=0 (17)

where u = (u,, u,) is the fluid velocity defined over the domain (x, y) € Q = [0, 271] x [0, 27]
with periodic boundary conditions, v = 1/Re is the non-dimensional viscosity equal to recipro-
cal of the Reynolds number and p denotes the pressure field over Q. We consider the flow
driven by the monochromatic Kolmogorov forcing f(x) = (f,, f,) with f, = sin(kry) and f, = 0.
k¢ = (0, ky) is the forcing wavenumber.
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Following [58], the kinetic energy E, dissipation D and energy input I are defined as

11,
Bw) = o7 [ 5l de

D(u) = ﬁ/ﬂmf dQ, (18)

I(u):ﬁ/gu-fdﬂ

satisfying the relationship E = I — D. Here |Q| = (277)* denotes the area of the domain.

The Kolmogorov flow admits a laminar solution u, = (Re/k?) sin (k;y), u, = 0. For suffi-
ciently large krand Re, this laminar solution is unstable, chaotic and exhibiting intermittent
surges in energy input I and dissipation D. Here we study the flow under a particular set of
parameters Re = 40 and k= 4 for which we have the occurrence of extreme events. Fig 5A
shows the bursting time series of the dissipation D along a sample trajectory.
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Fig 5. Kolmogorov flow. (A) Time series of energy dissipation rate D and Fourier coefficient modulus |a(1, 0)|—rare events are signaled by
burst in D and sudden dip in |a(1, 0)|. (B) Root mean squared (RMS) modulus for wavenumbers —8 < k;, k, < 8. (C) Vorticity field V x u = w at
time ¢ = 90 over the domain x € [0, 271] X [0, 27].

https://doi.org/10.1371/journal.pone.0197704.9005

PLOS ONE | https://doi.org/10.1371/journal.pone.0197704 May 24,2018 13/22



@° PLOS | ONE

Data-assisted reduced-order modeling of complex dynamical systems

Due to spatial periodicity, it is natural to examine the velocity field in Fourier space. The
divergence-free velocity field u admits the following Fourier series expansion:

a k2
u(x,t) =Y (lkk’lt) <_kl>e"“ (19)

k

where k = (ky, k,) is the wavenumber and a(k, t) = —a(—k, t) for u to be real-valued. For
notation clarity, we will not explicitly write out the dependence on ¢ from here on. Substituting
Eq (19) into the governing equations Eq (17) we obtain the evolution equations for a as (more
details are presented in S1 Appendix)

i) = 3 1P =LANEB TR o(p)a(g) -k all) ~ G0y, + 0, ) (20

The first term suggests that any mode with wavenumber k is directly affected, in a nonlinear
fashion, by pairs of modes with wavenumbers p and q such that k = p + q. A triplet of modes
{p> @, k} satisfying this condition is referred to as a triad. It is worth noting that a mode which
does not form a triad with mode k can still have an indirect effect on dynamics a (k) through
interacting with modes that do form a triad with k.

In [58], it is found that the most revealing triad interaction to observe, in the interest of pre-
dicting intermittent bursts in the energy input/dissipation, is amongst modes (0, k), (1, 0) and
(1, ky). Shortly prior to an intermittent event, mode (1, 0) transfers a large amount of energy to
mode (0, k), leading to rapid growth in the energy input rate I and subsequently the dissipa-
tion rate D (see Fig 5A). However, projecting the velocity field and dynamics to this triad of
modes and their complex conjugates fails to faithfully replicate the dynamical behaviors of the
full system (the triad only accounts for 59% of the total energy; Fourier energy spectrum is
shown in Fig 5B). We use the present framework to complement the projected triad dynamics.

Quantities included in the model are a(1, 0), a(0, ky) and a(1, ky) and their conjugate pairs,
which amount to a total of six independent dimensions. Data is generated as a single time
series of length 10° at At = 1 intervals, by integrating the full model equations Eq (17) using a
spectral grid of size 32 (wavenumbers truncated to —16 < ky, k, < 16) [59]. Each data point is
then taken as an initial condition from which a trajectory of length 1 (200 steps of 0.005) is
obtained. The sequence of states along the trajectory is projected to make up the 6-dimensional
input to the LSTM model. The ground truth total dynamics is again approximated with first-
order finite differences. The first 80% of the data is used for training, 5% for validation and the
remaining 15% for testing.

For this problem it is difficult to compute the true minimum parametrizing dimension so
we conservatively choose 1y gy = 70 and ngc = 38. It is found that the models do not tend to
overfit, nor is their performance sensitive to these hyper-parameters around the chosen value.
Since the number of hidden units used in the LSTM is large relative to the input dimension,
they are not concatenated with the input before entering the output layer. We first perform
pre-training with architecture I for 1000 epochs and fine-tune the weights with architecture IL
Due to the low-energy nature of the reduction space, transient effects are prominent (see S1
Appendix) and thus a sizable set-up stage is needed for training and prediction with architec-
ture II. Using a sequential training strategy, we keep s = 100 fixed and progressively increase
prediction length at p = {10, 30, 50, 100} (see S1 Appendix). At each step, weights are optimized
for 1000 epochs using a batch size of 250. The hyperparameters defining the loss functions are
P: =60, wy = 0.01 and y = 0.98, which are found empirically to result in favorable weight
convergence.
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Fig 6. Kolmogorov flow—RMSE vs. time. Errors are computed for 10* test trajectories (legend: fully data-driven—green dashed; data-

assisted—blue dashdotted; triad—orange dotted). The RMSE in each mode is normalized by the corresponding amplitude E(k) = 1/E[|a(k)|’].

A test trajectory is classified as regular if |a(1, 0)| > 0.4 at ¢ = 0 and rare otherwise. Performance for regular, rare and all trajectories are shown in
three columns. Data-assisted model has very similar errors to those of purely data-driven models for regular trajectories, but the performance is
visibly improved for rare events.

https://doi.org/10.1371/journal.pone.0197704.g006

Similar to the CDV system, we measure the prediction performance using RMSE and corre-
lation coefficient. Since the modeled Fourier coefficients are complex-valued, the sum in Eq
(15) is performed on the squared complex magnitude of the absolute error.

The resulting normalized test error curves are shown in Figs 6 and 7 respectively, compar-
ing the proposed data-assisted framework with the original projected model and the fully data-
driven approach as the prediction lead time increases. At 0.5 lead time (approximately 1 eddy
turn-over time ¢,), the data-assisted approach achieves 0.13, 0.005, 0.058 RMSE in mode [0, 4],
[1, 0] and [1, 4] respectively. Predictions along a sample trajectory is shown in Fig 8.

Opverall, the data-assisted approach produces the lowest error, albeit narrowly beating the
fully data-driven model but significantly outperforming the projected model (88%, 86% and
95% reduction in error for the three modes). This is because data is used to assist a projected
model that ignores a considerable amount of state information which contribute heavily to the
dynamics. It is therefore all up to the data-driven model to learn this missing information. For
this reason we observe similar performance between data-assisted and fully data-driven mod-
els. However, when we classify the test cases into regular and rare events based on the value of
|a(1, 0)| and examine the error performance separately, the advantage of the data-assisted
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Fig 7. Kolmogorov flow: ACC vs. time. Values are computed for (A) regular and (B) rare trajectories classified from 10* test cases. Legend:
fully data-driven—green dashed; data-assisted—blue dashdotted; triad dynamics—orange dotted. Real and imaginary parts are treated
independently. Similarly to RMSE in Fig 6, improvements in predictions made by the data-assisted model are more prominent for rare events.

https://doi.org/10.1371/journal.pone.0197704.9007

approach is evident in the latter category, especially for mode (1, 4). The is mainly due to (a)
rare events appear less frequently in data such that the corresponding dynamics is not learned
well compared to regular events and (b) the triad of Fourier modes selected play more promi-

nent role in rare events and therefore the projected dynamics contain relevant dynamical
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below 0.4 (shaded in red). Significant improvements are observed for wavenumbers (0, 4) and (1, 4).

https://doi.org/10.1371/journal.pone.0197704.9008

information. Nevertheless, errors for rare events are visibly higher (about 5 times), attesting to
their unpredictable nature in general.

To better understand the favorable properties of the hybrid scheme when it comes to the
prediction of extreme events we plot the probability density function (pdf) of complementary
and total dynamics (see Eq (7)), calculated from the 10°-point training data set with a kernel
density estimator (Fig 9). The dynamics values are standardized so that 1 unit in horizontal
axis represent 1 standard deviation. We immediately notice that total dynamics in every
dimension have a fat-tailed distribution. This signifies that the data set contains several extreme
observations, more than 10 standard deviations away from the mean. For data-driven models
these dynamics are difficult to learn due to their sporadic occurrence in sample data and low
density in phase space.

In contrast, the marginal pdf of the complementary dynamics have noticeably different
characteristics, especially in both the real and imaginary parts of mode (1, 4) (and to a smaller
degree for the real part of mode (0, 4)). The distribution is bimodal-like; more importantly,
density falls below 10™* level within 3 standard deviations. Because of its concentrated charac-
ter, this is a much better conditioned target distribution, as the data-driven scheme would
never have to learn extreme event dynamics; these are captured by the projected equations. As
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triad dynamics help remove large-deviation observations in the complementary dynamics.

https://doi.org/10.1371/journal.pone.0197704.9009

expected, the error plot in Fig 7 suggests that the biggest improvement from a purely data-
driven approach to a data-assisted approach is indeed for mode (1, 4).

Conclusion

We introduce a data assisted framework for reduced-order modeling and prediction of
extreme transient events in complex dynamical systems with high-dimensional attractors. The
framework utilizes a data-driven approach to complement the dynamics given by imperfect
models obtained through projection, i.e. in cases when the projection subspace does not per-
fectly parametrize the inertial manifold of the system. Information which is invisible to the
subspace but important to the dynamics is extracted by analyzing the time history of trajecto-
ries (data-streams) projected in the subspace, using a RNN strategy. The LSTM based architec-
ture of the employed RNN allows for the modeling of the dynamics using delayed coordinates,
a feature that significantly improves the performance of the scheme, complementing observa-
tion in fully data-driven schemes.

We showcase the capabilities of the present approach through two illustrative examples
exhibiting intermittent bursts: a low dimensional atmospheric system, the Charney-DeVore
model and a high-dimensional system, the Kolmogorov flow described by Navier-Stokes equa-
tions. For the former the data-driven model helps to improve significantly the short-term pre-
diction skill in a high-energy reduction subspace, while faithfully replicating the chaotic
attractor of the original system. In the infinite-dimensional example it is clearly demonstrated
that in regions characterized by extreme events the data-assisted strategy is more effective than
the fully data-driven prediction or the projected equations. On the other hand, when we con-
sider the performance close to the main attractor of the dynamical system the purely data-
driven approach and the data-assisted scheme exhibit comparable accuracy.

The present approach provides a non-parametric framework for the improvement of
imperfect models through data-streams. For regions where data is available we obtain correc-
tions for the model, while for regions where no data is available the underlying model still pro-
vides a baseline for prediction. The results in this work emphasize the value of this hybrid
strategy for the prediction of extreme transient responses for which data-streams may not con-
tain enough information. In the examples considered the imperfect models where obtained
through projection to low-dimensional subspaces. It is important to emphasize that such
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imperfect models should contain relevant dynamical information for the modes associated to
extreme events. These modes are not always the most energetic modes (as illustrated in the flu-
ids example) and numerous efforts have been devoted for their characterization [58, 60, 61].

Apart of the modeling of extreme events, the developed blended strategy should be of inter-
est for data-driven modeling of systems exhibiting singularities or singular perturbation prob-
lems. In this case the governing equations have one component that is particularly challenging
to model with data, due to its singular nature. For such systems it is beneficial to combine the
singular part of the equation with a data-driven scheme that will incorporate information
from data-streams. Future work will focus on the application of the formulated method in the
context of predictive control [62-64] for turbulent fluid flows and in particular for the suppres-
sion of extreme events.

Supporting information

S1 Appendix. Supplementary notes. In the notes we provide some background theory on
recurrent neural networks, LSTM and momentum based optimization methods. Additional
computation results for CDV and Kolmogorov flow are also included.

(PDF)

S1 Code. Python source code. All code used in this study is available at: https://github.com/
zhonglwan/data-assisted. In addition, all training and testing data files are available from the
authors upon request.
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