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Abstract

The prediction of extreme events, from avalanches and droughts to tsunamis and epidem-

ics, depends on the formulation and analysis of relevant, complex dynamical systems. Such

dynamical systems are characterized by high intrinsic dimensionality with extreme events

having the form of rare transitions that are several standard deviations away from the mean.

Such systems are not amenable to classical order-reduction methods through projection of

the governing equations due to the large intrinsic dimensionality of the underlying attractor

as well as the complexity of the transient events. Alternatively, data-driven techniques aim

to quantify the dynamics of specific, critical modes by utilizing data-streams and by expand-

ing the dimensionality of the reduced-order model using delayed coordinates. In turn, these

methods have major limitations in regions of the phase space with sparse data, which is the

case for extreme events. In this work, we develop a novel hybrid framework that comple-

ments an imperfect reduced order model, with data-streams that are integrated though a

recurrent neural network (RNN) architecture. The reduced order model has the form of pro-

jected equations into a low-dimensional subspace that still contains important dynamical

information about the system and it is expanded by a long short-term memory (LSTM) regu-

larization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect

model and the data-streams, projected to the reduced-order space. The data-driven model

assists the imperfect model in regions where data is available, while for locations where

data is sparse the imperfect model still provides a baseline for the prediction of the system

state. We assess the developed framework on two challenging prototype systems exhibiting

extreme events. We show that the blended approach has improved performance compared

with methods that use either data streams or the imperfect model alone. Notably the

improvement is more significant in regions associated with extreme events, where data is

sparse.
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Introduction

Extreme events are omnipresent in important problems in science and technology such as tur-

bulent and reactive flows [1, 2], Kolmogorov [3] and unstable plane Couette flow [4]), geo-

physical systems (e.g. climate dynamics [5, 6], cloud formations in tropical atmospheric

convection [7, 8]), nonlinear optics [9, 10] or water waves [11–13]), and mechanical systems

(e.g. mechanical metamaterials [14, 15]).

The complete description of these system through the governing equations is often chal-

lenging either because it is very hard/expensive to solve these equations with an appropriate

resolution or due to the magnitude of the model errors. The very large dimensionality of their

attractor in combination with the occurrence of important transient, but rare events, makes

the application of classical order-reduction methods a challenging task. Indeed, classical Galer-

kin projection methods encounter problems as the truncated degrees-of-freedom are often

essential for the effective description of the system due to high underlying intrinsic dimension-

ality. On the other hand, purely data-driven, non-parametric methods such as delay embed-

dings [16–21], equation-free methods [22, 23], Gaussian process regression based methods

[24], or recurrent neural networks based approaches [25] may not perform well when it comes

to rare events, since the training data-sets typically contain only a small number of the rare

transient responses. The same limitations hold for data-driven, parametric methods [26–29],

where the assumed analytical representations have parameters that are optimized so that the

resulted model best fits the data. Although these methods perform well when the system oper-

ates within the main ‘core’ of the attractor, this may not be the case when rare and/or extreme

events occur.

We propose a hybrid method for the formulation of a reduced-order model that combines

an imperfect physical model with available data streams. The proposed framework is impor-

tant for the non-parametric description, prediction and control of complex systems whose

response is characterized by both i) high-dimensional attractors with broad energy spectrum

distributed across multiple scales, and ii) strongly transient non-linear dynamics such as

extreme events.

We focus on data-driven recurrent neural networks (RNN) with a long-short term mem-

ory (LSTM) [30] that represents some of the truncated degrees-of-freedom. The key concept

of our work is the observation that while the imperfect model alone has limited descriptive

and prediction skills (either because it has been obtained by a radical reduction or it is a

coarse-grid solution of the original equations), it still contains important information espe-

cially for the instabilities of the system, assuming that the relevant modes are included in the

truncation. However, these instabilities need to be combined with an accurate description of

the nonlinear dynamics within the attractor and this part is captured in the present frame-

work by the recurrent neural network. Note, that embedding theorems [31, 32] make the

additional memory of the RNN to represent dimensions of the system that have been trun-

cated, a property that provides an additional advantage in the context of reduced-order

modeling [20, 25].

We note that such blended model-data approaches have been proposed previously in other

contexts. In [33, 34], a hybrid forecasting scheme based on reservoir computing in conjunction

with knowledge-based models are successfully applied to prototype spatiotemporal chaotic

systems. In [35–37] the linearized dynamics were projected to low-dimensional subspaces and

were combined with additive noise and damping that were rigorously selected to represent the

effects nonlinear energy fluxes from the truncated modes. The developed scheme resulted in

reduced-order stochastic models that efficiently represented the second order statistics in the

presence of arbitrary external excitation. In [38] a deep neural network architecture was
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developed to reconstruct the near-wall flow field in a turbulent channel flow using suitable

wall only information. These nonlinear near-wall models can be integrated with flow solvers

for the parsimonious modeling and control of turbulent flows [39–42]. In [43] a framework

was introduced wherein solutions from intermediate models, which capture some physical

aspects of the problem, were incorporated as solution representations into machine learning

tools to improve the predictions of the latter, minimizing the reliance on costly experimental

measurements or high-resolution, high-fidelity numerical solutions. [44] design a stable adap-

tive control strategy using neural networks for physical systems for which the state dependence

of the dynamics is reasonably well understood, but the exact functional form of this depen-

dence, or part thereof, is not, such as underwater robotic vehicles and high performance air-

craft. In [29, 45–47] neural nets are developed to simultaneously learn the solution of the

model equations using data. In these works that only a small number of scalar parameters is

utilized to represent unknown dynamics, while the emphasis is given primarily on the learning

of the solution, which is represented through a deep neural network. In other words, it is

assumed that a family of models that ‘lives’ in a low-dimensional parameter space can capture

the correct response. Such a representation is not always available though. Here our goal is

to apply such a philosophy on the prediction of complex systems characterized by high

dimensionality and strongly transient dynamics. We demonstrate the developed strategy in

prototype systems exhibiting extreme events and show that the hybrid strategy has important

advantages compared with either purely data-driven methods or those relying on reduced-

order models alone.

Materials and methods

We consider a nonlinear dynamical system with state variable u 2 Rd and dynamics given by

du
dt
¼ FðuÞ ¼ Luþ hðuÞ; ð1Þ

where F : Rd ! Rd is a deterministic, time-independent operator with linear and nonlinear

parts L and h respectively. We are specifically interested in systems whose dynamics results in

a non-trivial, globally attracting manifold S � Rd to which trajectories quickly decay. The

intrinsic dimension of S is presumably much less than d.

In traditional Galerkin-based reduced-order model [48] one typically uses an ansatz of the

form

u ¼ Yξþ Zηþ b; ð2Þ

where the columns of matrix Y = [y1,. . .,ym] form an orthonormal basis of Y, an m-dimen-

sional subspace of Rd, and the columns of Z = [z1,. . .,zd−m] make up an orthonormal basis for

the orthogonal complement Z ¼ Rd nY ; ξ and η are the projection coordinates associated

with Y and Z; b is an offset vector typically made equal to the attractor mean state. This linear

expansion allows reduction to take place through special choices of subspace Y and Z, as well

as their corresponding basis. For example, the well-known proper orthogonal decomposition

(POD) derives the subspace empirically to be such that the manifold S preserves its variance as

much as possible when projected to Y (or equivalently, minimizing the variance when pro-

jected to Z), given a fixed dimension constraint m.

Data-assisted reduced-order modeling of complex dynamical systems
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We show that such a condition enables reduction, by substituting Eq (2) into Eq (1) and

projecting onto Y and Z respectively to obtain two coupled systems of differential equations:

dξ
dt
¼ YTLYξþYTLZηþYThðYξþ Zηþ bÞ þYTLb

dη
dt
¼ ZTLYξþ ZTLZηþ ZThðYξþ Zηþ bÞ þ ZTLb:

ð3Þ

If on average |η|� |ξ|, we may make the approximation that η = 0, leading to a m-dimensional

system (ideally m� d)

dξ
dt
¼ YTLYξ þ YThðYξþ bÞ þ YTLb ¼ FξðξÞ; ð4Þ

which can be integrated in time. This is known as the flat Galerkin method. The solution to Eq

(1) is approximated by u� Yξ + b.

Using (4) as an approximation to Eq (1) is known to suffer from a number of problems.

First, the dimension m of the reduction subspace Y may be too large for |η|� 0 to hold true.

Second, the subspace Z is derived merely based on statistical properties of the manifold with-

out addressing the dynamics. This implies that even if η has small magnitude on average it

may play a big role in the dynamics of the high-energy space (e.g. acting as buffers for energy

transfer between modes [49]). Neglecting such dimensions in the description of the system

may alter its dynamical behaviors and compromise the ability of the model to generate reliable

forecasts.

An existing method that attempts to address the truncation effect of the η terms is the non-
linear Galerkin projection [48, 50], which expresses η as a function of ξ:

η ¼ ΦðξÞ; ð5Þ

yielding a reduced system

dξ
dt
¼ YTLYξ þ YTLZΦðξÞ þ YThðYξþ ZΦðξÞ þ bÞ þ YTLb: ð6Þ

The problems boils down to finding F, often empirically. Unfortunately, F is well-defined

only when the inertial manifold S is fully parametrized by dimensions of Y (see Fig 1), which is

a difficult condition to achieve for most systems under a reasonable m. Even if the condition is

met, how to systematically find F remains a big challenge.

Data-assisted reduced-order modeling

In this section we introduce a new framework for improving the reduced-space model that

assists, with data streams, the nonlinear Galerkin method. Our main idea relies on building an

additional data-driven model from data series observed in the reduction space to assist the

equation-based model Eq (4).

We note that the exact dynamics of ξ can be written as

dξ
dt
¼ FξðξÞ þ Gðξ;ηÞ; ð7Þ

where Fξ is defined in Eq (4) and G : Rm � Rd� m ! Rm encompasses the coupling between ξ
and η. We will refer to ψ = G(ξ, η) as the complementary dynamics since it can be thought of as

a correction that complements the flat Galerkin dynamics Fξ.

Data-assisted reduced-order modeling of complex dynamical systems
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The key step of our framework is to establish a data-driven model Ĝ to approximate G:

ψðtÞ ¼ GðξðtÞ; ηðtÞÞ � ĜðξðtÞ; ξðt � tÞ; ξðt � 2tÞ; . . .Þ ð8Þ

where ξ(t), ξ(t − τ),. . . are uniformly time-lagged states in ξ up to a reference initial condition.

The use of delayed ξ states makes up for the fact that Y may not be a perfect parametrization

subspace for S. The missing state information not directly accessible from within Y is instead

inferred from these delayed ξ states and then used to compute ψ. This model form is motivated

by the embedding theorems developed by Whitney [31] and Takens [32], who showed that the

attractor of a deterministic, chaotic dynamical system can be fully embedded using delayed

coordinates.

We use the long short-term memory (LSTM) [30], a regularization of recurrent neural net-

work (RNN), as the fundamental building block for constructing Ĝ. The LSTM has been

recently deployed successfully for the formulation of fully data-driven models for the predic-

tion of complex dynamical systems [25]. Here we employ the same strategy to model the com-

plementary dynamics while we preserve the structure of the projected equations. LSTM takes

advantage of the sequential nature of the time-delayed reduced space coordinates by process-

ing the input in chronological order and keeping memory of the useful state information that

complements ξ at each time step. An overview of the RNN model and the LSTM is given in S1

Appendix.

Building from LSTM units, we use two different architectures to learn the complementary

dynamics from data. The first architecture reads a sequence of ξ states, i.e. states projected to

the d–dimensional subspace and outputs the corresponding sequence of complementary

Fig 1. Geometric illustration of flat and nonlinear Galerkin projected dynamics inR3. 3D manifold S living in (ξ1, ξ2, η1) is projected to 2D

plane parametrized by (ξ1, ξ2). Parametrization is assumed to be imperfect, i.e. out-of-plane coordinate η1 cannot be uniquely determined from

(ξ1, ξ2). Flat Galerkin method always uses the dynamics corresponding to η1 = 0. Nonlinear Galerkin method uses the dynamics corresponding

to η1 = F(ξ1, ξ2) where F is determined by some prescribed criterion (e.g. minimization of L2 error).

https://doi.org/10.1371/journal.pone.0197704.g001
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dynamics. The second architecture reads an input sequence and integrate the output dynamics

to predict future. The details of both architectures are described below.

Data series. Both architectures are trained and tested on the same data set consisting of N
data series, where N is assumed to be large enough such that the low-order statistics of S are

accurately represented. Each data series is a sequence of observed values in reduced space Y,

with strictly increasing and evenly spaced observation times. Without loss of generality, we

assume that all data series have the same length. Moreover, the observation time spacing τ is

assumed to be small so that the true dynamics at each step of the series can be accurately esti-

mated with finite difference. We remark that for single-step prediction (architecture I below)

increasing τ (while keeping the number of steps constant) is beneficial for training as it reduces

the correlation between successive inputs. However, for multi-step prediction (architecture II),

large τ incurs integration errors which quickly outweigh the benefit of having decorrelated

inputs. Hence, we require small τ in data.

Architecture I. We denote an input sequence of length-p as {ξ1,. . .,ξp} and the corre-

sponding finite-difference interpolated dynamics as f _ξ1; . . . ; _ξpg. A forward pass in the first

architecture works as follows (illustrated in Fig 2I). At time step i, input ξi is fed into a LSTM

cell with nLSTM hidden states, which computes its output hi based on the received input and its

previous memory states (initialized to zero). The LSTM output is then passed through an

intermediary fully-connected (FC) layer with nFC hidden states and rectified linear unit

(ReLU) activations to the output layer at desired dimension m. Here hi is expected to contain

state information of the unobserved η at time step i, reconstructed effectively as a function of

all previous observed states {ξ1, . . ., ξi−1}. The model output is a predicted sequence of comple-

mentary dynamics fψ̂ 1; . . . ; ψ̂ pg.

Optionally, hi can be concatenated with LSTM input ξi to make up the input to the FC

layer. The concatenation is necessary when nLSTM is small relative to m. Under such condi-

tions, the LSTM hidden states hi are more likely trained to represent ηi alone, as opposed to

(ξi, ηi) combined. ξi thus needs to be seen by the FC layer in order to have all elements neces-

sary in order to estimate ψ. If the LSTM cell has sufficient room to integrate incoming input

with memory (i.e. number of hidden units larger than the intrinsic dimensionality of the

attractor), the concatenation may be safely ignored.

In the case of models with lower complexity for faster learning a small nLSTM is preferred.

However, finding the minimum working nLSTM, which is expected to approach the intrinsic

attractor dimension, is a non-trivial problem. Therefore, it is sometimes desirable to conserva-

tively choose nLSTM. In this case the LSTM unit is likely to have sufficient cell capacity to inte-

grate incoming input with memory, rendering the input concatenation step unnecessary.

The model is trained by minimizing a loss function with respect to the weights of the LSTM

cell and FC layer. The loss function is defined as a weighted sum of the mean squared error

(MSE) of the complementary dynamics:

L ¼
Xp

i¼1

wijjψ̂ i � ψ ijj
2

ð9Þ

where ψ i ¼
_ξi � FξðξÞ is the true complementary dynamics at step i. Note that for this archi-

tecture it is equivalent to defining the loss based on MSE of the total dynamics. For weights wi

we use a step profile:

wi ¼
w0 0 < i � pt

1 pt < i � p;

(

ð10Þ
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where w0� 1 is used to weight the first pt steps when the LSTM unit is still under the transient

effects of the cell states being initialized to zero. Predictions made during this period is there-

fore valued much less. In practice, pt is usually negatively correlated with the parametrization

power of the reduction subspace Y and can be determined empirically. For optimization we

use the gradient-based Adam optimizer [51] (also described in S1 Appendix) with early stop-

ping. The gradient is calculated for small batches of data series (batch size nbatch) and across

the entire training data for nep epochs.

A notable property of this model architecture is that input representing the reduced state is

always accurate regardless of any errors made in predicting the dynamics previously. This is

undesirable especially for chaotic systems where errors tend to grow exponentially. Ideally, the

Fig 2. Computational graph for model architecture I and II. Yellow nodes are input provided to the network corresponding to sequence of

states and blue nodes are prediction targets corresponding to the complementary dynamics (plus states for architecture II). Blocks labeled ‘FC’

are fully-connected layers with ReLU activations. Dashed arrows represent optional connections depending on the capacity of LSTM relative to

the dimension of ξ. Both architectures share the same set of trainable weights. For architecture I, predictions are made as input is read; input is

always accurate regardless of any prediction errors made in previous steps. This architecture is used only for training. Architecture II makes

prediction in a sequence-to-sequence (setup sequence to prediction sequence) fashion. Errors made early do impact all predictions that follow.

This architecture is used for fine-tuning weights and multi-step-ahead prediction.

https://doi.org/10.1371/journal.pone.0197704.g002

Data-assisted reduced-order modeling of complex dynamical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0197704 May 24, 2018 7 / 22



model should be optimized with respect to the cumulative effects of the prediction errors. To

this end, this architecture is primarily used for pre-training and a second architecture is uti-

lized for fine-tuning and multi-step-ahead prediction.

Architecture II. The second architecture bears resemblance to the sequence-to-sequence

(seq2seq) models which have been widely employed for natural language processing tasks [52,

53]. It consists of two stages (illustrated in Fig 2II): a set-up stage and a prediction stage. The

set-up stage has the same structure as architecture I, taking as input a uniformly spaced

sequence of s reduced-space states which we call {ξ−s+1, ξ−s+2. . ., ξ0}. No output, however, is

produced until the very last step. This stage acts as a spin-up such that zero initializations to

the LSTM memory no longer affects prediction of dynamics at the beginning of the next stage.

The output of the set-up stage is a single prediction of the complementary dynamics ψ̂ 0 corre-

sponding to the last state of the input sequence and the ending LSTM memory states. This

dynamics is combined with Fξ(ξ0) to give the total dynamics at ξ0. The final state and dynamics

are passed to an integrator to obtain the first input state of the prediction stage ξ̂1. During the

prediction stage, complementary dynamics is predicted iteratively based on the newest state

prediction and the LSTM memory content before combined with Fξ dynamics to generate the

total dynamics and subsequently the next state. After p prediction steps, the output of the

model is obtained as a sequence of predicted states fξ̂1; . . . ; ξ̂pg and a sequence of comple-

mentary dynamics fψ̂ 1; . . . ; ψ̂ pg.

For this architecture we define the loss function as

L ¼
Xp

i¼1

wijjψ̂ i þ Fξðξ̂ iÞ �
_ξijj

2
: ð11Þ

This definition is based on MSE of the total dynamics so that the model learns to ‘cooperate’

with the projected dynamics Fξ. For weights we use an exponential profile:

wi ¼ gi� 1; 0 < i � p ð12Þ

where 0< γ< 1 is a pre-defined ratio of decay. This profile is designed to counteract the expo-

nentially growing nature of the errors in a chaotic system and prevent exploding gradients.

Similar to architecture I, training is performed in batches using the Adam algorithm.

Architecture II, in contrast with the architecture I, finishes reading the entire input

sequence before producing the prediction sequence. For this reason it is suitable for running

multi-step-ahead predictions. Both architectures, however, share the same set of trainable

weights used to estimate the complementary dynamics. Hence, we can utilize architecture I as

a pre-training facility for architecture II because it tends to have smaller gradients (as errors do

not accumulate over time steps) and thus faster convergence. This idea is very similar to

teacher forcing method used to accelerate training (see [54]). On the other hand, architecture

II is much more sensitive to the weights. Gradients tend to be large and only small learning

rates can be afforded. For more efficient training, it is therefore beneficial to use architecture I

to find a set of weights that already work with reasonable precision and perform fine-tuning

with architecture II. In addition, the pt parameter for architecture I also provides a baseline for

the set-up stage length s to be used for architecture II.

Another feature of architecture II is that the length of its prediction stage can be arbitrary.

Shorter length limits the extent to which errors can grow and renders the model easier to train.

In practice we make sequential improvements to the model weights by progressively increasing

the length p of the prediction stage.

Data-assisted reduced-order modeling of complex dynamical systems
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For convenience, the hyperparameters involved in each architecture are summarized in

Table 1.

Fully data-driven modeling

Both of the proposed architectures can be easily adapted for a fully data-driven modeling

approach (see [25]): for architecture I the sequence of total dynamics f _ξ1; . . . ; _ξpg is used as

the training target in place of the complementary dynamics and for architecture II the FC layer

output is directly integrated to generate the next state. Doing so changes the distribution of

model targets and implicitly forces the model to learn more. For comparison, we examine the

performance of this fully data-driven approach through the example applications in the follow-

ing section.

Results and discussion

A chaotic intermittent low-order atmospheric model

We consider a chaotic intermittent low-order atmospheric model, the truncated Charney-

DeVore (CDV) equations, developed to model barotropic flow in a β-plane channel with orog-

raphy. The model formulation used herein is attributed to [55, 56], and employs a slightly dif-

ferent scaling and a more general zonal forcing profile than the original CDV. Systems

dynamics are governed by the following ordinary differential equations:

_x1 ¼ g�
1
x3 � Cðx1 � x�

1
Þ; _x2 ¼ � ða1x1 � b1Þx3 � Cx2 � d1x4x6;

_x3 ¼ ða1x1 � b1Þx2 � g1x1 � Cx3 þ d1x4x5; _x4 ¼ g�
2
x6 � Cðx4 � x�

4
Þ þ εðx2x6 � x3x5Þ;

_x5 ¼ � ða2x1 � b2Þx6 � Cx5 � d2x4x3; _x6 ¼ ða2x1 � b2Þx5 � g2x4 � Cx6 þ d2x4x2;

ð13Þ

where the model coefficients are given by

am ¼
8
ffiffiffi
2
p

m2ðb2 þm2 � 1Þ

pð4m2 � 1Þðb2 þm2Þ
; bm ¼

bb2

b2 þm2
;

dm ¼
64

ffiffiffi
2
p

15p

b2 � m2 þ 1

b2 þm2
; g�m ¼ g

4
ffiffiffi
2
p

mb
pð4m2 � 1Þ

;

ε ¼
16

ffiffiffi
2
p

5p
; gm ¼ g

4
ffiffiffi
2
p

m3b
pð4m2 � 1Þðb2 þm2Þ

;

ð14Þ

Table 1. Summary of hyperparameters for data-driven model architectures.

Category Symbol Hyperparameter Architecture

Layers nLSTM number of hidden units, LSTM layer I & II

nFC number of hidden units, fully connected layer I & II

Series s number of time steps, set-up stage II

p number of time steps, prediction stage I & II

τ time step I & II

Loss pt length of transient (low-weight) period I

w0 transient weight I

γ weight decay II

Training nbatch batch size I & II

nep number of epochs I & II

η, β1, β2 learning rate and momentum control I & II

https://doi.org/10.1371/journal.pone.0197704.t001
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for m = 1, 2. Here we examine the system at a fixed set of parameters

ðx�
1
; x�

4
;C; b; g; bÞ ¼ ð0:95; � 0:76095; 0:1; 1:25; 0:2; 0:5Þ, which is found to demonstrate cha-

otic intermittent transitions between zonal and blocked flow regime, caused by the combina-

tion of topographic and barotropic instabilities [55, 56]. These highly transient instabilities

render this model an appropriate test case for evaluating the developed methodology. The two

distinct regimes are manifested through x1 and x4 (Fig 3A and 3B).

For reduction of the system we attempt the classic proper orthogonal decomposition

(POD) whose details are described in S1 Appendix. The basis vectors of the projection sub-

space are calculated using the method of snapshots on a uniformly sampled time series of

length 10,000 obtained by integrating Eq (13). The first five POD modes collectively account

for 99.6% of the total energy. However, despite providing respectable short-term prediction

accuracy, projecting the CDV system to its most energetic five modes completely changes the

dynamical behavior and results in a single globally attracting fixed point instead of a strange

attractor. The difference between exact and projected dynamics can be seen in terms of the

two most energetic POD coefficients, ξ1, ξ2, in Fig 3C (left and middle subplots).

In the context of our framework, we construct a data-assisted reduced-order model that

includes the dynamics given by the 5-mode POD projection. We set nLSTM = 1 (because one

dimension is truncated) and nFC = 16. Input to the FC layer is a concatenation of LSTM output

and reduced state because nLSTM = 1 is sufficient to represent the truncated mode. Data is

Fig 3. CDV system. (A) 104 points sampled from the CDV attractor, projected to (x1, x4) plane. (B) Example time series for x1; blocked flow

regime is shaded in red. (C) Length-2000 trajectory projected to the first two POD modes (normalized) integrated using the CDV model (left),

5-mode POD projected model (middle) and data-assisted model (right). Despite preserving 99.6% of the total variance, the 5-mode projected

model has a single fixed point as opposed to a chaotic attractor. Data-assisted model, however, is able to preserve the geometric features of the

original attractor.

https://doi.org/10.1371/journal.pone.0197704.g003
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obtained as 10,000 trajectories, each with p = 200 and τ = 0.01. We use 80%, 10%, 10% for

training, validation and testing respectively. For this setup it proves sufficient, based on empir-

ical evidence, to train the assisting data-driven model with Architecture I for 1000 epochs,

using a batch size of 250. The trained weights are plugged in architecture II to generate sequen-

tial predictions. As we quantify next, it is observed that (a) the trajectories behave much like

the 6-dimensional CDV system in the long term by forming a similar attractor, as shown in

Fig 3C, and (b) the short-term prediction skill is boosted significantly.

We quantify the improvement in prediction performance by using two error metrics—root

mean squared error (RMSE) and correlation coefficient. For comparison we also include pre-

diction errors when using a purely data-driven model based on LSTM. RMSE in ith reduced

dimension is computed as

RMSEiðtlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ðx
ðnÞ
i ðtlÞ � x̂

ðnÞ
i ðtlÞÞ

2

s

; i ¼ 1; . . . ;m; ð15Þ

where x
ðnÞ
i ðtlÞ and x̂

ðnÞ
i ðtlÞ represent the truth and prediction for the nth test trajectory at

prediction lead time tl respectively. The results are plotted in Fig 4. We end remark that the

Fig 4. Results for CDV system. (Row 1) RMSE vs. lead time for 5-mode POD projected model (orange dotted), data-assisted model (blue

dashdotted) and purely data-driven model (green dashed). (Row 2) ACC vs. lead time. (Row 3) A sample trajectory corresponding to zonal

flow—true trajectory is shown (black solid). (Row 4) A sample trajectory involving regime transition (happening around t = 20). For rows 1, 3

and 4, plotted values are normalized by the standard deviation of each dimension.

https://doi.org/10.1371/journal.pone.0197704.g004
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predictions obtained by the proposed data-assisted model are significantly better than the pro-

jected model, as well as than the purely data-driven approach. Low error levels are maintained

by the present approach even when the other methods under consideration exhibit significant

errors.

The anomaly correlation coefficient (ACC) [57] measures the correlation between anoma-

lies of forecasts and those of the truth with respect to a reference level and is defined as

ACCiðtlÞ ¼

XN

n¼1

ðx
ðnÞ
i ðtlÞ � �x iÞðx̂

ðnÞ
i ðtlÞ � �x iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

ðx
ðnÞ
i ðtlÞ � �x iÞ

2
XN

n¼1

ðx̂
ðnÞ
i ðtlÞ � �x iÞ

2

s ð16Þ

where �x i is the reference level set to the observation average by default. ACC takes a maximum

value of 1 if the variation pattern of the anomalies of forecast is perfectly coincident with that

of truth and a minimum value of -1 if the pattern is completely reversed. Again, the proposed

method is able to predict anomaly variation patterns which are almost perfectly correlated

with the truth at very large lead times when the predictions made by the compared methods

are mostly uncorrelated (Fig 4—second row).

In the third and fourth rows of Fig 4 we illustrate the improvement that we obtain with the

data-assisted approach throughout the systems attractor, i.e. in both zonal and blocked

regimes. In the third row of Fig 4 the flow in the zonal regime is shown and in the fourth row

we demonstrate the flow transitions into the blocked regime around t = 20. In both cases, the

data-assisted version clearly improves the prediction accuracy.

We emphasize that the presence of the equation-driven part contributes largely to the long-

term stability (vs. purely data driven models) while the data-driven part serves to improve the

short-term prediction accuracy. These two ingredients of the dynamics complement each

other favorably in achieving great prediction performance. In addition, the data-assisted

approach successfully produces a chaotic structure that is similar to the one observed in the

full-dimensional system, a feat that cannot be replicated by either methods using equation or

data alone.

Intermittent bursts of dissipation in Kolmogorov flow

We consider the two-dimensional incompressible Navier-Stokes equations

@tu ¼ � u � ru � rpþ nDuþ f

r � u ¼ 0
ð17Þ

where u = (ux, uy) is the fluid velocity defined over the domain (x, y) 2 O = [0, 2π] × [0, 2π]

with periodic boundary conditions, ν = 1/Re is the non-dimensional viscosity equal to recipro-

cal of the Reynolds number and p denotes the pressure field over O. We consider the flow

driven by the monochromatic Kolmogorov forcing f(x) = (fx, fy) with fx = sin(kf y) and fy = 0.

kf = (0, kf) is the forcing wavenumber.
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Following [58], the kinetic energy E, dissipation D and energy input I are defined as

EðuÞ ¼
1

jOj

Z

O

1

2
juj

2 dO;

DðuÞ ¼
n

jOj

Z

O

jruj2 dO;

IðuÞ ¼
1

jOj

Z

O

u � f dO

ð18Þ

satisfying the relationship _E ¼ I � D. Here |O| = (2π)2 denotes the area of the domain.

The Kolmogorov flow admits a laminar solution ux ¼ ðRe=k2
f Þ sin ðkf yÞ; uy ¼ 0. For suffi-

ciently large kf and Re, this laminar solution is unstable, chaotic and exhibiting intermittent

surges in energy input I and dissipation D. Here we study the flow under a particular set of

parameters Re = 40 and kf = 4 for which we have the occurrence of extreme events. Fig 5A

shows the bursting time series of the dissipation D along a sample trajectory.

Fig 5. Kolmogorov flow. (A) Time series of energy dissipation rate D and Fourier coefficient modulus |a(1, 0)|—rare events are signaled by

burst in D and sudden dip in |a(1, 0)|. (B) Root mean squared (RMS) modulus for wavenumbers −8� k1, k2� 8. (C) Vorticity fieldr × u = ω at

time t = 90 over the domain x 2 [0, 2π] × [0, 2π].

https://doi.org/10.1371/journal.pone.0197704.g005
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Due to spatial periodicity, it is natural to examine the velocity field in Fourier space. The

divergence-free velocity field u admits the following Fourier series expansion:

uðx; tÞ ¼
X

k

aðk; tÞ
jkj

k2

� k1

 !

eik�x ð19Þ

where k = (k1, k2) is the wavenumber and aðk; tÞ ¼ � að� k; tÞ for u to be real-valued. For

notation clarity, we will not explicitly write out the dependence on t from here on. Substituting

Eq (19) into the governing equations Eq (17) we obtain the evolution equations for a as (more

details are presented in S1 Appendix)

_aðkÞ ¼
X

pþq¼k

i
ðp1q2 � p2q1Þðk1q1 þ k2q2Þ

jpjjqjjkj
aðpÞaðqÞ � njkj2aðkÞ �

1

2
iðdk;kf

þ dk;� kf
Þ ð20Þ

The first term suggests that any mode with wavenumber k is directly affected, in a nonlinear

fashion, by pairs of modes with wavenumbers p and q such that k = p + q. A triplet of modes

{p, q, k} satisfying this condition is referred to as a triad. It is worth noting that a mode which

does not form a triad with mode k can still have an indirect effect on dynamics _aðkÞ through

interacting with modes that do form a triad with k.

In [58], it is found that the most revealing triad interaction to observe, in the interest of pre-

dicting intermittent bursts in the energy input/dissipation, is amongst modes (0, kf), (1, 0) and

(1, kf). Shortly prior to an intermittent event, mode (1, 0) transfers a large amount of energy to

mode (0, kf), leading to rapid growth in the energy input rate I and subsequently the dissipa-

tion rate D (see Fig 5A). However, projecting the velocity field and dynamics to this triad of

modes and their complex conjugates fails to faithfully replicate the dynamical behaviors of the

full system (the triad only accounts for 59% of the total energy; Fourier energy spectrum is

shown in Fig 5B). We use the present framework to complement the projected triad dynamics.

Quantities included in the model are a(1, 0), a(0, kf) and a(1, kf) and their conjugate pairs,

which amount to a total of six independent dimensions. Data is generated as a single time

series of length 105 at Δt = 1 intervals, by integrating the full model equations Eq (17) using a

spectral grid of size 32 (wavenumbers truncated to −16� k1, k2� 16) [59]. Each data point is

then taken as an initial condition from which a trajectory of length 1 (200 steps of 0.005) is

obtained. The sequence of states along the trajectory is projected to make up the 6-dimensional

input to the LSTM model. The ground truth total dynamics is again approximated with first-

order finite differences. The first 80% of the data is used for training, 5% for validation and the

remaining 15% for testing.

For this problem it is difficult to compute the true minimum parametrizing dimension so

we conservatively choose nLSTM = 70 and nFC = 38. It is found that the models do not tend to

overfit, nor is their performance sensitive to these hyper-parameters around the chosen value.

Since the number of hidden units used in the LSTM is large relative to the input dimension,

they are not concatenated with the input before entering the output layer. We first perform

pre-training with architecture I for 1000 epochs and fine-tune the weights with architecture II.

Due to the low-energy nature of the reduction space, transient effects are prominent (see S1

Appendix) and thus a sizable set-up stage is needed for training and prediction with architec-

ture II. Using a sequential training strategy, we keep s = 100 fixed and progressively increase

prediction length at p = {10, 30, 50, 100} (see S1 Appendix). At each step, weights are optimized

for 1000 epochs using a batch size of 250. The hyperparameters defining the loss functions are

pt = 60, w0 = 0.01 and γ = 0.98, which are found empirically to result in favorable weight

convergence.
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Similar to the CDV system, we measure the prediction performance using RMSE and corre-

lation coefficient. Since the modeled Fourier coefficients are complex-valued, the sum in Eq

(15) is performed on the squared complex magnitude of the absolute error.

The resulting normalized test error curves are shown in Figs 6 and 7 respectively, compar-

ing the proposed data-assisted framework with the original projected model and the fully data-

driven approach as the prediction lead time increases. At 0.5 lead time (approximately 1 eddy

turn-over time te), the data-assisted approach achieves 0.13, 0.005, 0.058 RMSE in mode [0, 4],

[1, 0] and [1, 4] respectively. Predictions along a sample trajectory is shown in Fig 8.

Overall, the data-assisted approach produces the lowest error, albeit narrowly beating the

fully data-driven model but significantly outperforming the projected model (88%, 86% and

95% reduction in error for the three modes). This is because data is used to assist a projected

model that ignores a considerable amount of state information which contribute heavily to the

dynamics. It is therefore all up to the data-driven model to learn this missing information. For

this reason we observe similar performance between data-assisted and fully data-driven mod-

els. However, when we classify the test cases into regular and rare events based on the value of

|a(1, 0)| and examine the error performance separately, the advantage of the data-assisted

Fig 6. Kolmogorov flow—RMSE vs. time. Errors are computed for 104 test trajectories (legend: fully data-driven—green dashed; data-

assisted—blue dashdotted; triad—orange dotted). The RMSE in each mode is normalized by the corresponding amplitude EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½jaðkÞj2�
q

.

A test trajectory is classified as regular if |a(1, 0)|> 0.4 at t = 0 and rare otherwise. Performance for regular, rare and all trajectories are shown in

three columns. Data-assisted model has very similar errors to those of purely data-driven models for regular trajectories, but the performance is

visibly improved for rare events.

https://doi.org/10.1371/journal.pone.0197704.g006
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approach is evident in the latter category, especially for mode (1, 4). The is mainly due to (a)

rare events appear less frequently in data such that the corresponding dynamics is not learned

well compared to regular events and (b) the triad of Fourier modes selected play more promi-

nent role in rare events and therefore the projected dynamics contain relevant dynamical

Fig 7. Kolmogorov flow: ACC vs. time. Values are computed for (A) regular and (B) rare trajectories classified from 104 test cases. Legend:

fully data-driven—green dashed; data-assisted—blue dashdotted; triad dynamics—orange dotted. Real and imaginary parts are treated

independently. Similarly to RMSE in Fig 6, improvements in predictions made by the data-assisted model are more prominent for rare events.

https://doi.org/10.1371/journal.pone.0197704.g007
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information. Nevertheless, errors for rare events are visibly higher (about 5 times), attesting to

their unpredictable nature in general.

To better understand the favorable properties of the hybrid scheme when it comes to the

prediction of extreme events we plot the probability density function (pdf) of complementary

and total dynamics (see Eq (7)), calculated from the 105-point training data set with a kernel

density estimator (Fig 9). The dynamics values are standardized so that 1 unit in horizontal

axis represent 1 standard deviation. We immediately notice that total dynamics in every

dimension have a fat-tailed distribution. This signifies that the data set contains several extreme
observations, more than 10 standard deviations away from the mean. For data-driven models

these dynamics are difficult to learn due to their sporadic occurrence in sample data and low

density in phase space.

In contrast, the marginal pdf of the complementary dynamics have noticeably different

characteristics, especially in both the real and imaginary parts of mode (1, 4) (and to a smaller

degree for the real part of mode (0, 4)). The distribution is bimodal-like; more importantly,

density falls below 10−4 level within 3 standard deviations. Because of its concentrated charac-

ter, this is a much better conditioned target distribution, as the data-driven scheme would

never have to learn extreme event dynamics; these are captured by the projected equations. As

Fig 8. Kolmogorov flow: Predictions along a sample trajectory with lead time = 0.5. Results for the complex modulus (left column), real part

(middle column) and imaginary part (right column) of the wavenumber triad are shown. Legend: truth—black solid line; data-assisted—blue

circle; triad dynamics—orange triangle; purely data-driven—green square. Rare events are recorded when |a(1, 0)| (left column, mid row) falls

below 0.4 (shaded in red). Significant improvements are observed for wavenumbers (0, 4) and (1, 4).

https://doi.org/10.1371/journal.pone.0197704.g008
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expected, the error plot in Fig 7 suggests that the biggest improvement from a purely data-

driven approach to a data-assisted approach is indeed for mode (1, 4).

Conclusion

We introduce a data assisted framework for reduced-order modeling and prediction of

extreme transient events in complex dynamical systems with high-dimensional attractors. The

framework utilizes a data-driven approach to complement the dynamics given by imperfect

models obtained through projection, i.e. in cases when the projection subspace does not per-

fectly parametrize the inertial manifold of the system. Information which is invisible to the

subspace but important to the dynamics is extracted by analyzing the time history of trajecto-

ries (data-streams) projected in the subspace, using a RNN strategy. The LSTM based architec-

ture of the employed RNN allows for the modeling of the dynamics using delayed coordinates,

a feature that significantly improves the performance of the scheme, complementing observa-

tion in fully data-driven schemes.

We showcase the capabilities of the present approach through two illustrative examples

exhibiting intermittent bursts: a low dimensional atmospheric system, the Charney-DeVore

model and a high-dimensional system, the Kolmogorov flow described by Navier-Stokes equa-

tions. For the former the data-driven model helps to improve significantly the short-term pre-

diction skill in a high-energy reduction subspace, while faithfully replicating the chaotic

attractor of the original system. In the infinite-dimensional example it is clearly demonstrated

that in regions characterized by extreme events the data-assisted strategy is more effective than

the fully data-driven prediction or the projected equations. On the other hand, when we con-

sider the performance close to the main attractor of the dynamical system the purely data-

driven approach and the data-assisted scheme exhibit comparable accuracy.

The present approach provides a non-parametric framework for the improvement of

imperfect models through data-streams. For regions where data is available we obtain correc-

tions for the model, while for regions where no data is available the underlying model still pro-

vides a baseline for prediction. The results in this work emphasize the value of this hybrid

strategy for the prediction of extreme transient responses for which data-streams may not con-

tain enough information. In the examples considered the imperfect models where obtained

through projection to low-dimensional subspaces. It is important to emphasize that such

Fig 9. Marginal probability density function of total dynamics (top row) and complementary dynamics (bottom row). Horizontal axes are

scaled by standard deviations of each quantity. For the real and imaginary parts of mode (1, 4) (and real part of mode (0, 4) to a smaller degree)

triad dynamics help remove large-deviation observations in the complementary dynamics.

https://doi.org/10.1371/journal.pone.0197704.g009
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imperfect models should contain relevant dynamical information for the modes associated to

extreme events. These modes are not always the most energetic modes (as illustrated in the flu-

ids example) and numerous efforts have been devoted for their characterization [58, 60, 61].

Apart of the modeling of extreme events, the developed blended strategy should be of inter-

est for data-driven modeling of systems exhibiting singularities or singular perturbation prob-

lems. In this case the governing equations have one component that is particularly challenging

to model with data, due to its singular nature. For such systems it is beneficial to combine the

singular part of the equation with a data-driven scheme that will incorporate information

from data-streams. Future work will focus on the application of the formulated method in the

context of predictive control [62–64] for turbulent fluid flows and in particular for the suppres-

sion of extreme events.

Supporting information

S1 Appendix. Supplementary notes. In the notes we provide some background theory on

recurrent neural networks, LSTM and momentum based optimization methods. Additional

computation results for CDV and Kolmogorov flow are also included.

(PDF)

S1 Code. Python source code. All code used in this study is available at: https://github.com/

zhong1wan/data-assisted. In addition, all training and testing data files are available from the

authors upon request.
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