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1. Introduction for scientists and engineers to advances in machine learning and
at the same time they present a fertile ground for the develop-

In recent years we have observed significant advances in the ment and testing of advanced ML algorithms (Hassabis, Kumaran,
field of machine learning (ML) that rely on potent algorithms and Summerfield, & Botvinick, 2017). The deployment of advanced
their deployment on powerful computing architectures. Some  machine learning algorithms to complex systems is in its infancy.

of these advances have been materialized by deploying ML al- We believe that it deserves further exploration as it may have
gorithms on dynamic environments such as video games (Ha far-reaching implications for societal and scientific challenges in
& Schmidhuber, 2018; Schrittwieser et al, 2019) and simpli-  fields ranging from weather and climate prediction (Gneiting &
fied physical systems (Al gym) (Brockman et al, 2016; Mnih  Raftery, 2005; Weyn, Durran, & Caruana, 2019), medicine ana-
et al,, 2015; Silver et al,, 2016). Dynamic environments are of-  Iytics (Esteva et al, 2017; Kurth et al., 2018), to modeling ocean

ten encountered across disciplines ranging from engineering and dynamics and turbulent flows (Aksamit, Sapsis, & Haller, 2019;

physics to finance and social sciences. They can serve as bridge Brunton, Noack, & Koumoutsakos, 2020). ) ) )
Complex systems are characterized by multiple, interacting

spatiotemporal scales that challenge classical numerical meth-
; ) ods for their prediction and control. The dynamics of such sys-

E-mail addresses: vlachas@collegium.ethz.ch (P.R. Vlachas), . . e . .. .
jpathak@umd.edu (J. Pathak), bhunt@umd.edu (B.R. Hunt), sapsis@mit.edu .tems are typlcally chaotic and dlfﬁcu,lt to pl‘edlC.t, a critical issue
(T.P. Sapsis), girvan@umd.edu (M. Girvan), edott@umd.edu (E. Ott), in problems such as weather and climate prediction. Recurrent
petros@ethz.ch (P. Koumoutsakos). Neural Networks (RNNs), offer a potent method for addressing

* Corresponding author.

https://doi.org/10.1016/j.neunet.2020.02.016
0893-6080/© 2020 Elsevier Ltd. All rights reserved.



192 P.R. Vlachas, J. Pathak, B.R. Hunt et al. / Neural Networks 126 (2020) 191-217

these challenges. RNNs were developed for processing of sequen-
tial data, such as time series (Hochreiter & Schmidhuber, 1997),
speech (Graves & Jaitly, 2014), and language (Cho et al., 2014;
Dong, Wu, He, Yu, & Wang, 2015). Unlike classical numerical
methods that aim at discretizing existing equations of complex
systems, RNN models are data driven. RNNs keep track of a
hidden state, that encodes information about the history of the
system dynamics. Such data-driven models are of great impor-
tance in applications to complex systems where equations based
on first principles may not exist, or may be expensive to discretize
and evaluate, let alone control, in real-time.

Early application of neural networks for modeling and predic-
tion of dynamical systems can be traced to the work of Lapedes
and Farber (1987), where they demonstrated the efficiency of
feedforward artificial neural networks (ANNs) to model determin-
istic chaos. In (Krischer, Rico-Martinez, Kevrekidis, Rotermund,
Ertl, & Hudson, 1993), ANNs were utilized to forecast the prin-
cipal components of a spatiotemporal catalytic reaction. As an
alternative to ANNs, wavelet networks were proposed in Cao,
Hong, Fang, and He (1995) for chaotic time series prediction.
However, these works have been limited to intrinsically low-
order systems, and they have been often deployed in conjunction
with dimensionality reduction tools. As shown in this work, RNNs
have the potential to overcome these scalability problems and
be applied to high-dimensional spatio-temporal dynamics. The
works of Takens (1981) and Sauer, Yorke, and Casdagli (1991)
showed that the dynamics on a D-dimensional attractor of a
dynamical system can be unfolded in a time delayed embedding
of dimension greater than 2D. The identification of a useful em-
bedding and the construction of a forecasting model have been
the subject of life-long research efforts (Bradley & Kantz, 2015).
More recently, in Lusch, Kutz, and Brunton (2018), a data-driven
method based on the Koopman operator formalism (Koopman,
1931) was proposed, using feed-forward ANNs to identify an
embedding space with linear dynamics that is then amenable to
theoretical analysis.

There is limited work at the interface of RNNs and non-
linear dynamical systems (Lu, Hunt, & Ott, 2018; Pathak,
Hunt, Girvan, Lu, & Ott, 2018; Pathak, Lu, Hunt, Girvan, & Ott,
2017; Vlachas, Byeon, Wan, Sapsis, & Koumoutsakos, 2018; Wan,
Vlachas, Koumoutsakos, & Sapsis, 2018). Here we examine and
compare two of the most prominent nonlinear techniques in
the forecasting of dynamical systems, namely RNNs trained with
backpropagation and Reservoir Computing (RC). We note that
our RC implementation also uses a recurrent neural network,
but according to the RC paradigm, it does not train the internal
network parameters. We consider the cases of fully observed
systems as well as the case of partially observed systems such as
reduced order models of real world problems, where typically we
do not have access to all the degrees-of-freedom of the dynamical
system.

Reservoir Computing (RC) has shown significant success in
modeling the full-order space dynamics of high dimensional
chaotic systems. This success has sparked the interest of theoreti-
cal researchers that proved universal approximation properties of
these models (Gonon & Ortega, 2019; Grigoryeva & Ortega, 2018).
In Pathak et al. (2017), Pathak, Wikner et al. (2018) RC is utilized
to build surrogate models for chaotic systems and compute their
Lyapunov exponents based solely on data. A scalable approach
to high-dimensional systems with local interactions is proposed
in Pathak, Hunt et al. (2018). In this case, an ensemble of RC
networks is used in parallel. Each ensemble member is forecast-
ing the evolution of a group of modes while all other modes
interacting with this group is fed at the input of the network. The
model takes advantage of the local interactions in the state-space
to decouple the forecasting of each mode group and improve the
scalability.

RNNs are architectures designed to capture long-term depen-
dencies in sequential data (Bengio, Simard, & Frasconi, 1994;
Goodfellow, Bengio, & Courville, 2016; Hochreiter, 1998; Pascanu,
Mikolov, & Bengio, 2013). The potential of RNNs for capturing
temporal dynamics in physical systems was explored first using
low dimensional RNNs (Elman, 1990) without gates to predict
unsteady boundary-layer development, separation, dynamic stall,
and dynamic reattachment back in 1997 (Faller & Schreck, 1997).
The utility of RNNs was limited by the finding that during the
learning process the gradients may vanish or explode. In turn, the
recent success of RNNs is largely attributed to a cell architecture
termed Long Short-Term Memory (LSTM). LSTMs employ gates
that effectively remember and forget information thus alleviat-
ing the problem of vanishing gradients (Hochreiter, 1998). In
recent years (Bianchi, Maiorino, Kampffmeyer, Rizzi, & Jenssen,
2017) RNN architectures have been bench-marked for short-term
load forecasting of demand and consumption of resources in a
supply network, while in Laptev, Yosinski, Li, and Smyl (2017)
they are utilized for extreme event detection in low dimen-
sional time series. In Wan and Sapsis (2018) LSTM networks are
used as surrogates to model the kinematics of spherical particles
in fluid flows. In Vlachas et al. (2018) RNNs with LSTM cells
were utilized in conjunction with a mean stochastic model to
capture the temporal dependencies and long-term statistics in
the reduced order space of a dynamical system and forecast its
evolution. The method demonstrated better accuracy and scaling
to high-dimensions and longer sequences than Gaussian Pro-
cesses (GPs). In Wan et al. (2018) the LSTM is deployed to model
the residual dynamics in an imperfect Galerkin-based reduced
order model derived from the system equations. RC and LSTM
networks are applied in the long-term forecasting of partially
observable chaotic chimera states in Neofotistos et al. (2019),
where instead of a completely model-free approach, ground-
truth measurements of currently observed states are helping to
improve the long-term forecasting capability. RNNs are practical
and efficient data-driven approximators of chaotic dynamical sys-
tems, due to their (1) universal approximation ability (Schéfer &
Zimmermann, 2006; Siegelmann & Sontag, 1995) and (2) ability
to capture temporal dependencies and implicitly identify the
required embedding for forecasting.

Despite the rich literature on both methods there are limited
comparative studies of the two frameworks. The present work
aims to fill this gap by examining these two machine learning
algorithms on challenging physical problems. We compare the
accuracy, performance, and computational efficiency of the two
methods on the full-order and reduced-order modeling of two
prototype chaotic dynamical systems. We also examine the mod-
eling capabilities of the two approaches for reproducing correct
Lyapunov Exponents and frequency spectra. Moreover, we in-
clude in the present work some more recent RNN architectures,
like Unitary (Arjovsky, Shah, & Bengio, 2016; Jing et al., 2017) and
Gated Recurrent Units (GRUs) (Cho et al., 2014; Chung, Gulcehre,
Cho, & Bengio, 2014) that have shown superior performance
over LSTMs for a wide variety of language, speech signal and
polyphonic music modeling tasks.

We are interested in model-agnostic treatment of chaotic dy-
namical systems, where the time evolution of the full state or
some observable is available, but we do not possess any knowl-
edge about the underlying equations. In the latter case, we ex-
amine which method is more suitable for modeling temporal
dependencies in the reduced order space (observable) of dy-
namical systems. Furthermore, we evaluate the efficiency of an
ensemble of RNNs in predicting the full state dynamics of a
high-dimensional dynamical system in parallel and compare it
with that of RC. Finally, we discuss the advantages, implementa-
tion aspects (such as RAM requirements and training time) and
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limitations of each model. We remark that the comparison in
terms of time and RAM memory consumption, does not aim to
quantify advantages/drawback among models but rather provide
information for the end users of the software.

We hope that the present study may open to the ML com-
munity a new arena with highly structured and complex envi-
ronments for developing and testing advanced new algorithms
(Hassabis et al., 2017). At the same time it may offer a bridge
to the physics community to appreciate and explore the impor-
tance of advanced ML algorithms for solving challenging physical
problems (Brunton et al., 2020).

The structure of the paper is as follows. Section 2 provides an
introduction to the tasks and an outline of the architectures and
training methods used in this work. Section 3 introduces the mea-
sures used to compare the efficiency of the models. In Section 4
the networks are compared in forecasting reduced order dynam-
ics in the Lorenz-96 system. In Section 5, a parallel architecture
leveraging local interactions in the state-space is introduced and
utilized to forecast the dynamics of the Lorenz-96 system (Lorenz,
1995) and the Kuramoto-Sivashinsky equation (Kuramoto, 1978).
In Section 6 the GRU and RC networks are utilized to reproduce
the Lyapunov spectrum of the Kuramoto-Sivashinsky equation,
while Section 7 concludes the paper.

2. Methods — sequence modeling

We consider machine learning algorithms for time series fore-
casting. The models are trained on time series of an observable
o € R% sampled at a fixed rate 1/At, {01, ..., or}, where we
eliminate At from the notation for simplicity. The models possess
an internal high-dimensional hidden state denoted by h, € R%
that enables the encoding of temporal dependencies on past state
history. Given the current observable o;, the output of each model
is a forecast 0,1 for the observable at the next time instant 0 ;.
This forecast is a function of the hidden state. As a consequence,
the general functional form of the models is given by

he = f(0r, he—1),  Oc1 = (), (1

where fh" is the hidden-to-hidden mapping and f;’ is the hidden-
to-output mapping. All recurrent models analyzed in this work
share this common architecture. They differ in the realizations
of f,f‘ and f.” and in the way the parameters or weights of these
functions are learned from data, i.e., trained, to forecast the
dynamics.

2.1. Long short-term memory

In Elman RNNs (Elman, 1990), the vanishing or exploding
gradients problem stems from the fact that the gradient is multi-
plied repeatedly during back-propagation through time (Werbos,
1988) with a recurrent weight matrix. As a consequence, when
the spectral radius of the weight matrix is positive (negative),
the gradients are prone to explode (shrink). The LSTM (Hochre-
iter & Schmidhuber, 1997) was introduced in order to allevi-
ate the vanishing gradient problem of ElIman RNNs (Hochreiter,
1998) by leveraging gating mechanisms that allow information
to be forgotten. The equations that implicitly define the recurrent
mapping fhh of the LSTM are given by

g{ = o (Ws[h;_1, 0] + by) g = oi(Wilh._1, 0.1 + by)

¢, = tanh(Wc[h;_1, 0] +b;) ¢ = gdoc +g 06 (2)
g =on (Wh[ht—l, o]+ bh) h, = g’ O tanh(c,),
where gf .8, 8% € R, are the gate vector signals (forget, input

and output gates), o; € R% is the observable input at time
t, hy € R% is the hidden state, ¢ € R% is the cell state,

while Wy, W;, W, W, € Ré%*dntdo) are weight matrices and
by, bi, b., b, € R% biases. The symbol ©® denotes the element-
wise product. The activation functions oy, o; and o}, are sigmoids.
For a more detailed explanation of the LSTM cell architecture
refer to Hochreiter and Schmidhuber (1997). The dimension of
the hidden state d, (number of hidden units) controls the capacity
of the cell to encode history information. The hidden-to-output
functional form f? is given by a linear layer

6t+l =W, h, 3)

where W, € R%x*%_ The forget gate bias is initialized to one
according to Jozefowicz, Zaremba, and Sutskever (2015) to accel-
erate training. An illustration of the information flow in a LSTM
cell is given in Fig. 1(c).

2.2. Gated recurrent unit

The Gated Recurrent Unit (GRU) (Cho et al., 2014) was pro-
posed as a variation of LSTM utilizing a similar gating mecha-
nism. Even though GRU lacks an output gate and thus has fewer
parameters, it achieves comparable performance with LSTM in
polyphonic music and speech signal datasets (Chung et al., 2014).
The GRU equations are given by
Zt =o0g (WZ[ht—17 o]+ bz)
rt = og (Wr[ht—lv o] + br)

h, = tanh(wh [rt O h;_, Ot] + bh)

hy=(1-2z)Oh_1+2Oh,

(4)

where o, € R% is the observable at the input at time t, z,_€ R% is
the update gate vector, r; € R% is the reset gate vector, h; € R%,
h; € R% is the hidden state, W;, W,, W}, € R%*(dntdo) are weight
matrices and b,, b, b, € R% biases. The gating activation ogisa
sigmoid. The output 0, is given by the linear layer:

0r1 = W, hy, (5)

where W, € R%>d_ An illustration of the information flow in a
GRU cell is given in Fig. 1(d).

2.3. Unitary evolution

Unitary RNNs (Arjovsky et al., 2016; Jing et al., 2017), similar to
LSTMs and GRUs, aim to alleviate the vanishing gradients problem
of plain RNNs. Here, instead of employing sophisticated gating
mechanisms, the effort is focused on the identification of a re-
parametrization of the recurrent weight matrix, such that its
spectral radius is a priori set to one. This is achieved by optimizing
the weights on the subspace of complex unitary matrices. The
architecture of the Unitary RNN is given by

h, = modReLU(Whht_1 + Woot)
6[+] = Wo ﬂi(h[),

(6)

where W, € C%>d is the complex unitary recurrent weight
matrix, W, € C%*% is the complex input weight matrix, h; €
C% is the complex state vector, fi(-) denotes the real part of a
complex number, W, € R%*% is the real output matrix, and the
modified ReLU non-linearity modReLU is given by

Z4

(modReLU(z)) - ﬁ ® ReLU(|zi| + by), 7)
i Zi

where |z;| is the norm of the complex number z;. The complex

unitary matrix W}, is parametrized as a product of a diagonal

matrix and multiple rotational matrices. The reparametrization

used in this work is the one proposed in Jing et al. (2017). The
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Fig. 1. The information flow for a Reservoir Computing (RC) cell, a complex Unitary cell (Unit), a Long Short-Term Memory (LSTM) cell and a Gated Recurrent

Unit (GRU) cell. The cells were conceptualized to tackle the vanishing gradients problem of Elman-RNNs. The cell used in RC is the standard architecture of the
Elman-RNN. However, the weights of the recurrent connections are randomly picked to satisfy the echo state property and create a large reservoir of rich dynamics.
Only the output weights are trained (e.g., with ridge regression). The Unitary RNN utilizes a complex unitary matrix to ensure that the gradients are not vanishing.
LSTM and GRU cells employ gating mechanisms that allow forgetting and storing of information in the processing of the hidden state. Ellipses and circles denote
entry-wise operations, while rectangles denote layer operations. The information flow of the complex hidden state in the Unitary RNN is illustrated with dashed red
color, while the untrained randomly picked weights of the RC with orange. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

complex input weight matrix W, € C%*% is initialized with
W +j W™, with real matrices W', Wim € R9%>% whose values
are drawn from a random uniform distribution ¢/[—0.01, 0.01]
according to Jing et al. (2017). An illustration of the information
flow in a Unitary RNN cell is given in Fig. 1(b).

In the original paper of Jing et al. (2017) the architecture
was evaluated on a speech spectrum prediction task, a copying
memory task and a pixel permuted MNIST task demonstrating
superior performance to LSTM either in terms of final testing
accuracy or wall-clock training speed.

2.4. Back-propagation through time

Backpropagation dates back to the works of Dreyfus (1962),
Linnainmaa (1976) and Rumelhart, Hinton, and Williams (1986),
while its extension to RNNs termed Backpropagation through
time (BPTT) was presented in Werbos (1988, 1990). A forward
pass of the network is required to compute its output and com-
pare it against the label (or target) from the training data based
on an error metric (e.g. mean squared loss). Backpropagation
amounts to the computation of the partial derivatives of this loss
with respect to the network parameters by iteratively applying
the chain rule, transversing backwards the network. These deriva-
tives are computed analytically with automatic differentiation.
Based on these partial derivatives the network parameters are
updated using a first-order optimization method, e.g. stochastic
gradient descent.

The power of BBTT lies in the fact that it can be deployed to
learn the partial derivatives of the weights of any network ar-
chitecture with differentiable activation functions, utilizing state-
of-the-art automatic differentiation software, while (as the data
are processed in small fragments called batches) it scales to
large datasets and networks, and can be accelerated by em-
ploying Graphics Processing Units (GPUs). These factors made
backpropagation the workhorse of state-of-the-art deep learning
methods (Goodfellow et al., 2016).

In our study, we utilize BBTT to train the LSTM (Section 2.1),
GRU (Section 2.2) and Unitary (Section 2.3) RNNs. There are three
key parameters of this training method that can be tuned. The
first hyperparameter «; is the number of forward-pass time-
steps performed to accumulate the error for back-propagation.
The second parameter is the number of previous time-steps for
the back-propagation of the gradient «,. This is also denoted
as truncation length, or sequence length. This parameter has to
be large enough to capture the temporal dependencies in the
data. However, as k, becomes larger, training becomes much

slower, and may lead to vanishing gradients. In the following,
we characterize as stateless, models whose hidden state before
Ky is hard-coded to zero, i.e., h_,, = 0. Stateless models cannot
learn dependencies that expand in a time horizon larger that «;.
However, in many practical cases stateless models are widely
employed assuming that only short-term temporal dependencies
exist. In contrast, stateful models propagate the hidden state
h_,, # 0 between temporally consecutive batches. In our study,
we consider only stateful networks.

Training stateful networks is challenging because the hidden
state h_,, has to be available from a previous batch and the
network has to be trained to learn temporal dependencies that
may span many time-steps in the past. In order to avoid overlap
between two subsequent data fragments and compute h_,, for
the next batch update, the network is teacher-forced for «3 time-
steps between two consecutive weight updates. That implies
providing ground-truth values at the input and performing for-
ward passing without any back-propagation. This parameter, has
an influence on the training speed, as it determines how often the
weights are updated. We pick k3 = k; 4+ k1 — 1 as illustrated in
Fig. 2, and optimize k1 as a hyperparameter.

The weights of the networks are initialized using the method
of Xavier proposed in Glorot and Bengio (2010). We utilize a
stochastic optimization method with adaptive learning rate called
Adam (Kingma & Ba, 2015) to update the weights and biases. We
add Zoneout (Krueger et al.,, 2017) regularization in the recur-
rent weights and variational dropout (Gal & Ghahramani, 2016)
regularization at the output weights (with the same keep prob-
ability) to both GRU and LSTM networks to alleviate over-fitting.
Furthermore, following Vlachas et al. (2018) we add Gaussian
noise sampled from A0, k,0) to the training data, where o is
the standard deviation of the data. The noise level «, is tuned.
Moreover, we also vary the number of RNN layers by stacking
residual layers (He, Zhang, Ren, & Sun, 2016) on top of each other.
These deeper architectures may improve forecasting efficiency
by learning more informative embedding at the cost of higher
computing times.

In order to train the network on a data sequence of T time-
steps, we pass the whole dataset in pieces (batches) for many
iterations (epochs). An epoch is finished when the network has
been trained on the whole dataset once. At the beginning of
every epoch we sample uniformly B = 32 integers from the set
Z = {1,...,T}, and remove them from it. Starting from these
indexes we iteratively pass the data through the network till we
reach the last (maximum) index in Z, training it with BBTT. Next,
we remove all the intermediate indexes we trained on from Z. We
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L=-% 1160 —ot|2

Fig. 2. Illustration of an unfolded RNN. Time series data o are provided at the input of the RNN. The RNN is forecasting the evolution of the observable at its outputs
0. The average difference (mean square error) between i, iterative predictions (outputs) of the RNN 6 and the targets o from the time series data is computed
every k3 steps. The gradient of this quantity, illustrated with red arrows, is back-propagated through time (BPTT) for «, previous temporal time-steps, computing the
gradients of the network parameters that are shared at each time layer. The output of intermediate steps illustrated with dashed lines is ignored. Stateless models
initialize the hidden state before training at a specific fragment of the sequence of size «, with zero (in this case h¢=0) and cannot capture dependencies longer
than «,. In this way, consecutive training batches (sequence fragments) do not have to be temporally adjacent. In stateful models, the hidden state is never set to
zero and in order to train at a specific fragment of the sequence, the initial hidden state has to be computed from the previously processed fragment. In order to
eliminate the overlap between fragments, we teacher force the network with ground-truth data for x3 > «, time-steps. In our study we pick x3 =k +x1 — 1 as

illustrated in the figure.

repeat this process, until Z = @, proclaiming the end of the epoch.
The batch-size is thus B = 32. We experimented with other
batch-sizes B € {8, 16, 64} without significant improvement in
performance of the methods used in this work.

As an additional over-fitting counter-measure we use
validation-based early stopping, where 90% of the data is used
for training and the rest 10% for validation. When the validation
error stops decreasing for Nygience = 20 consecutive epochs, the
training round is over. We train the network for Nyyyus = 10
rounds decreasing the learning rate geometrically by dividing
with a factor of ten at each round to avoid tuning the learning
rate of the Adam optimizer. When all rounds are finished, we pick
the model with the lowest validation error among all epochs and
rounds.

Preliminary work on tuning the hyperparameters of the Adam
optimization algorithm apart from the learning rate, i.e. 8; and
B> in the original paper (Kingma & Ba, 2015), did not lead to
important differences on the results. For this reason and due
to our limited computational budget, we use the default values
proposed in the paper (Kingma & Ba, 2015) (81 = 0.9 and B, =
0.999).

2.5. Reservoir computing

Reservoir Computing (RC) aims to alleviate the difficulty in
learning the recurrent connections of RNNs and reduce their
training time (LukoSevicius, 2012; LukoSevicius & Jaeger, 2009).
RC relies on randomly selecting the recurrent weights such
that the hidden state captures the history of the evolution of
the observable o; and train the hidden-to-output weights. The
evolution of the hidden state depends on the random initializa-
tion of the recurrent matrix and is driven by the input signal.
The hidden state is termed reservoir state to denote the fact
that it captures temporal features of the observed state history.
This technique has been proposed in the context of Echo-State-
Networks (ESNs) (Jaeger & Haas, 2004) and Liquid State Machines
with spiking neurons (LSM) (Maass, Natschldger, & Markram,
2002).

In this work, we consider reservoir computers with fh” given
by the functional form

h, = tanh(Wh,,-of + Wh,hht—1)7 (8)

where Wy; € R%*% and Wy, € R%*%, Other choices of RC ar-
chitectures are possible, including Antonik, Haelterman, and Mas-
sar (2017), Haynes, Soriano, Rosin, Fischer, and Gauthier (2015)

and Larger et al. (2017, 2012) Following Jaeger and Haas (2004),
the entries of Wy ; are uniformly sampled from [—w, @], where @
is a hyperparameter. The reservoir matrix Wy , has to be selected
in a way such that the network satisfies the “echo state property”.
This property requires all of the conditional Lyapunov exponents
of the evolution of h; conditioned on the input (observations
0;) to be negative so that, for large t, the reservoir state h;
does not depend on initial conditions. For this purpose, Wy j is
set to a large low-degree matrix, scaled appropriately to pos-
sess a spectral radius (absolute value of the largest eigenvalue)
o whose value is a hyperparameter adjusted so that the echo
state property holds.! The effect of the spectral radius on the
predictive performance of RC is analyzed in Jiang and Lai (2019).
Following Pathak, Hunt et al. (2018) the output coupling f; is set
to

0r41 = Woih, (9)

where the augmented hidden state E is a dy dimensional vector
such that the ith component of h; is h{ = h} for half of the
reservoir nodes and hi = (hi)? for the other half, enriching the
dynamics with the square of the hidden state in half of the nodes.
This was empirically shown to improve forecasting efficiency of
RCs in the context of dynamical systems (Pathak, Hunt et al.,
2018). The matrix W, € R%*% is trained with regularized
least-squares regression with Tikhonov regularization to alleviate
overfitting (Tikhonov & Arsenin, 1977; Yan & Su, 2009) following
the same recipe as in Pathak, Hunt et al. (2018). The Tikhonov
regularization 7 is optimized as a hyperparameter. Moreover, we
further regularize the training procedure of RC by adding Gaus-
sian noise in the training data. This was shown to be beneficial for
both short-term performance and stabilizing the RC in long-term
forecasting. For this reason, we add noise sampled from N(0, «,0)
to the training data, where o is the standard deviation of the data
and the noise level «,; a tuned hyperparameter.

3. Comparison metrics
The predictive performance of the models depends on the

selection of model hyperparameters. For each model we perform
an extensive grid search of optimal hyperparameters, reported

1 Because of the nonlinearity of the tanh function, p < 1 is not necessarily
required for the echo state property to hold true.
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in the Appendix. All model evaluations are mapped to a single
Nvidia Tesla P100 GPU and are executed on the XC50 compute
nodes of the Piz Daint supercomputer at the Swiss national su-
percomputing center (CSCS). In the following we quantify the
prediction accuracy of the methods in terms of the normalized
root mean square error, given by

NRMSE(8) = <(°;72°)2> (10)

where 6 € R% is the forecast at a single time-step, 0 € R%
is the target value, and ¢ € R% is the standard deviation over
time of each state component. In Eq. (10), the notation (-) denotes
the state-space average (average of all elements of a vector).
To alleviate the dependency on the initial condition, we report
the evolution of the NRMSE over time averaged over 100 initial
conditions randomly sampled from the attractor.

Perhaps the most basic characterization of chaotic motion is
through the concept of Lyapunov exponents (Ott, 2002): Consid-
ering two infinitesimally close initial conditions U(t = 0) and
U(t = 0)+48U(t = 0), their separation |§U(t)| on average diverges
exponentially in time, [8U(t)|/|5U(t = 0)| ~ exp(At), as t — oo.
Note that the dimensionality of the vector displacement §U(t)
is that of the state-space. In general, the Lyapunov exponent A
depends on the orientation (8U(t)/|5U(t)]|) of the vector displace-
ment §U(t). In the t — oo limit, the number of possible values of
A is typically equal to the state-space dimensionality. We denote
these values A; > A, > Az > ... and collectively call them
the Lyapunov exponent spectrum (LS) of the particular chaotic
system. The Lyapunov exponent spectrum will be evaluated in
Section 6.

However, we note that a special role is played by A4, and
only Ay, the largest Lyapunov exponent. We refer to the largest
Lyapunov exponent as the Maximal Lyapunov exponent (MLE).
Chaotic motion of a bounded trajectory is defined by the condi-
tion A, > 0. Importantly, if the orientation of §U(t = 0) is chosen
randomly, the exponential rate at which the orbits separate is
A with probability one. This is because in order for any of the
other exponents (A,, As, ...) to be realized, §U(t = 0) must be
chosen to lie on a subspace of lower dimensionality than that
of the state-space; i.e., the orientation of §U(t = 0) must be
chosen in an absolutely precise way never realized by random
choice. Hence, the rate at which typical pairs of nearby orbits
separate is A, and T4t = Al_l, the “Lyapunov time”, provides
a characteristic time scale for judging the quality of predictions
based on the observed prediction error growth.

In order to obtain a single metric of the predictive perfor-
mance of the models we compute the valid prediction time (VPT)
in terms of the MLE of the system A; as

VPT = Aiargmax {tr | NRMSE(0;) < €, Vt < tf} (11)
T

which is the largest time t; the model forecasts the dynamics with

a NRMSE error smaller than € normalized with respect to A;. In

the following, we set € = 0.5.

In order to evaluate the efficiency of the methods in capturing
the long-term statistics of the dynamical system, we evaluate
the mean power spectral density (power spectrum) of the state
evolution over all i € {1,...,d,} elements o] of the state (since
the state o; is a vector). The power spectrum of the evolution of o;

is given by PSD(f) = 20 logm(z \U(F)|) dB, where U(f) = FFT(o})
is the complex Fourier spectrum of the state evolution.

4. Forecasting reduced order observable dynamics in the
Lorenz-96

The accurate long-term forecasting of the state of a determin-
istic chaotic dynamical system is challenging as even a minor

initial error can be propagated exponentially in time due to the
system dynamics even if the model predictions are perfect. A
characteristic time-scale of this propagation is the Maximal Lya-
punov Exponent (MLE) of the system as elaborated in Section 3.
In practice, we are often interested in forecasting the evolution
of an observable (that we can measure and obtain data from),
which does not contain the full state information of the system.
The observable dynamics are more irregular and challenging to
model and forecast because of the additional loss of information.

Classical approaches to forecast the observable dynamics based
on Takens seminal work (Takens, 1981), rely on reconstructing
the full dynamics in a high-dimensional phase-space. The state
of the phase-space is constructed by stacking delayed versions
of the observed state. Assume that the state of the dynamical
system is X, but we only have access to the less informative
observable o;. The phase-space state, i.e., the embedding state,
is given by z; = [0;,0¢—, ..., 0t_d—1)c], where the time-lag t
and the embedding dimension d are the embedding parameters.
For d large enough, and in the case of deterministic nonlinear dy-
namical chaotic systems, there is generally a one-to-one mapping
between a point in the phase-space and the full state of the sys-
tem and vice versa. This implies that the dynamics of the system
are deterministically reconstructed in the phase-space (Kantz &
Schreiber, 1997) and that there exists a phase-space forecasting
rule z;.,1 = F*(z;), and thus an observable forecasting rule 0, =
]:0(0[7 Ot ¢, ..., ot—(d—l)l’ )'

The recurrent architectures presented in Section 2 fit to this
framework, as the embedding state information can be captured
in the high-dimensional hidden state h; of the networks by pro-
cessing the observable time series o;, without having to tune the
embedding parameters t and d.

In the following, we introduce a high-dimensional dynamical
system, the Lorenz-96 model and evaluate the efficiency of the
methods to forecast the evolution of a reduced order observable
of the state of this system. Here the observable is not the full
state of the system, and the networks need to capture temporal
dependencies to efficiently forecast the dynamics.

4.1. Lorenz-96 model

The Lorenz-96 model was introduced by Lorenz (1995) to
model the large-scale behavior of the mid-latitude atmosphere.
The model describes the time evolution of an atmospheric vari-
able that is discretized spatially over a single latitude circle mod-

eled in the high-dimensional state ¥ = [Xp,...,%_1], and is
defined by the equations

dx;

?; = (X1 —X 2)% 1 — % +F, (12)
forj € {0,1,...,] — 1}, where we assume periodic boundary

conditions X_; = X_1, X_» = X;_,. In the following we consider
a grid-size ] = 40 and two different forcing regimes, F = 8 and
F =10.

We solve Eq. (12) starting from a random initial condition
with a Fourth Order Runge-Kutta scheme and a time-step of
8t = 0.01. We run the solver up to T = 2000 after ensuring
that transient effects are discarded (Tyqns = 1000). The first half
10° samples are used for training and the rest for testing. For
the forecasting test in the reduced order space, we construct
observables of dimension d, € {35, 40} by performing Singular
Value Decomposition (SVD) and keeping the most energetic d,
components. The complete procedure is described in the Ap-
pendix. The 35 most energetic modes taken into account in the
reduced order observable, explain approximately 98% of the total
energy of the system in both F € {8, 10}.

As a reference timescale that characterizes the chaoticity of
the system we use the Lyapunov time, which is the inverse of
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Fig. 3. The evolution of the NRMSE error (average over 100 initial conditions) of the model with the highest VPT for each architecture in the Lorenz-96 with
F € {8, 10} and d, € {35, 40}. Reservoir computers show remarkable predictive capabilities when the full state is observed, surpassing all other models (plots (b) and
(d)). Predictions of Unitary networks diverge from the attractor in all scenarios, while iterative forecasts of RC suffer from instabilities when only partial information
of a reduced order observable is available. In contrast, GRU and LSTM show stable behavior and superior performance in the reduced order scenario (plots (a) and

(€)). RC ==; GRU == [STM == Unit

the MLE, i.e., T41 = 1/ A;. The Lyapunov spectrum of the Lorenz-
96 system is calculated using a standard technique based on QR
decomposition (Abarbanel, 2012). This leads to A; ~ 1.68 for
F =8 and A, = 2.27 for F = 10.

4.2. Results on the Lorenz-96 model

The evolution of the NRMSE of the model with the largest
VPT of each architecture for F € {8, 10} is plotted in Fig. 3 for
two values of the dimension of the observable d, € {35, 40},
where d, = 40 corresponds to full state information. Note that
the observable is given by first transforming the state to its SVD
modes and then keeping the d, most energetic ones. As indicated
by the slopes of the curves, models predicting the observable
containing full state information (d, = 40) exhibit a slightly
slower NRMSE increase compared to models predicting in the
reduced order state, as expected.

When the full state of the system is observed, the predictive
performance of RC is superior to that of all other models. Unitary
networks diverge from the attractor in both reduced order and
full space in both forcing regimes F € {8, 10}. This divergence
(inability to reproduce the long-term climate of the dynamics)
stems from the iterative propagation of the forecasting error. The
issue has been also demonstrated in previous studies in both
RC (Lu et al.,, 2018; Pathak, Wikner et al., 2018) and RNNs (Vlachas
et al, 2018). This is because the accuracy of the network for
long-term climate modeling, depends not only on how well it
approximates the dynamics on the attractor locally, but also
on how it behaves near the attractor, where we do not have
data. As noted in Lu et al. (2018), assuming that the network
has a full Lyapunov spectrum near the attractor, if any of the
Lyapunov exponents that correspond to infinitesimal perturba-
tions transverse to the attractor phase-space is positive, then

the predictions of the network will eventually diverge from the
attractor. Empirically, the divergence effect can also be attributed
to insufficient network size (model expressiveness) and training,
or attractor regions in the state-space that are underrepresented
in the training data (poor sampling). Even with a densely sampled
attractor, during iterative forecasting in the test data, the model
is propagating its own predictions, which might lead to a region
near (but not on) the attractor where any positive Lyapunov
exponent corresponding to infinitesimal perturbations transverse
to the attractor will cause divergence.

In this work, we use 10°> samples to densely capture the
attractor. Still, RC suffers from the iterative propagation of errors
leading to divergence especially in the reduced order forecasting
scenario. In order to alleviate the problem, a parallel scheme
for RC is proposed in Pathak, Wikner et al. (2018) that enables
training of many reservoirs locally forecasting the state. However,
this method is limited to systems with local interactions in their
state-space. In the case we discuss here the observable obtained
by singular value decomposition does not fulfill this assumption.
In many systems the assumption of local interaction may not
hold. GRU and LSTM show superior forecasting performance in
the reduced order scenario setting in Lorenz-96 as depicted in
Figs. 3(a)-3(c). Especially in the case of F = 10, the LSTM
and GRU models are able to predict up to 2 Lyapunov times
ahead before reaching an NRMSE of ¢ = 1, compared to RC
and Unitary RNNs that reach this error threshold in 1 Lyapunov
time. However, it should be noted that the predictive utility of all
models (considering an error threshold of ¢ = 0.5) is limited to
one Lyapunov time when applied to reduced order data and up
to two Lyapunov times in the full state.

In order to analyze the sensitivity of the VPT to the hyper-
parameter selection, we present violin plots in Fig. 4, showing a
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Table 1
Maximum and average Valid Prediction Time (VPT) over all hyperparameter sets
averaged over 100 initial conditions sampled from the testing data for each
model.

Seoman F=38 F=10

cenario 35 q, =10 7, =35 7, = 40

Model

MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG
Unit 043 | 034 | 058 | 034 | 049 | 039 | 0.63 | 041
LSTM 0.74 | 0.37 | 0.97 | 045 | 1.17 | 0.47 | 1.73 | 0.66
GRU 0.98 | 0.37 | 134 | 055 | 1.22 | 0.43 | 159 | 0.71
RC 055 | 032 | 2.31 | 0.79 | 0.60 | 0.36 | 2.35 | 0.83

smoothed kernel density estimate of the VPT values of all tested
hyperparameter sets for d, = 35 and d, = 45 and F = 8 and
F = 10. The horizontal markers denote the maximum, average
and minimum value. Quantitative results for both F € {8, 10} are
provided in Table 1.

In the full state scenario (d, = 40) and forcing regime F =
8, RC shows a remarkable performance with a maximum VPT
~ 2.31, while GRU exhibits a max VPT of ~ 1.34. The LSTM
has a max VPT of ~ 0.97, while Unitary RNNs show the lowest
forecasting ability with a max VPT of &~ 0.58. From the violin plots
in Fig. 4 we notice that densities are wider at the lower part, cor-
responding to many models (hyperparameter sets) having much
lower VPT than the maximum, emphasizing the importance of
tuning the hyperparameters. Similar results are obtained for the
forcing regime F = 10. One noticeable difference is that the LSTM
exhibits a max VPT of ~ 1.73 which is higher than that of GRU
which is &~ 1.59. Still, the VPT of RC in the full state scenario is
~ 2.35 which is the highest among all models.

In contrast, in the case of d, = 35 where the models are
forecasting on the reduced order space in the forcing regime
F = 8, GRU is superior to all other models with a maximum
VPT =~ 0.98 compared to LSTM showing a max VPT ~ 0.74. LSTM
shows inferior performance to GRU which we speculate may be
due to insufficient hyperparameter optimization. Observing the
results on F = 10 justifies our claim, as indeed both the GRU and
the LSTM show the highest VPT values of ~ 1.22 and ~ 1.17 re-
spectively. In both scenarios F = 8 and F = 10, when forecasting
the reduced order space d, = 35, RC shows inferior performance
compared to both GRU and LSTM networks with max VPT~ 0.55
for F = 8 and & 0.60 for F = 10. Last but not least, we observe
that Unitary RNNs show the lowest forecasting ability among
all models. This may not be attributed to the expressiveness of
Unitary networks, but rather to the difficulty on identifying the
right hyperparameters (Greff, Srivastava, Koutik, Steunebrink, &
Schmidhuber, 2016). In Fig. 4 we observe that the violin plots in
the reduced order state are much thinner at the top compared

; Unit

.. (For interpretation of the references to color in this figure legend,

to the ones in the full state. This implies that the identification of
hyperparameter sets that achieve a high VPT in the reduced order
space is more challenging. This emphasizes that forecasting on
the reduced order state is a more difficult task compared to the
full state scenario.

In the following, we evaluate the ability of the trained net-
works to forecast the long-term statistics of the dynamical sys-
tem. In almost all scenarios and all cases considered in this work,
forecasts of Unitary RNN networks fail to remain close to the
attractor and diverge. For this reason, we omit the results on
these networks.

We quantify the long-term behavior in terms of the power
spectrum of the predicted dynamics and its difference with the
true spectrum of the testing data. In Fig. 5, we plot the power
spectrum of the predicted dynamics from the model (hyperpa-
rameter set) with the lowest power spectrum error for each
architecture for d, € {35, 40} and F € {8, 10} against the ground-
truth spectrum computed from the testing data (dashed black
line). In the full state scenario in both forcing regimes (Figs. 5(b),
5(d)), all models match the true statistics in the test dataset,
as the predicted power spectra match the ground-truth. These
results imply that RC is a powerful predictive tool in the full order
state scenario, as RC models both capture the long-term statistics
and have the highest VPT among all other models analyzed in this
work. However, in the case of a reduced order observable, the RC
cannot match the statistics. In contrast, GRU and LSTM networks
achieve superior forecasting performance while matching the
long-term statistics, even at this challenging setting of a chaotic
system with reduced order information.

An important aspect of machine learning models is their scal-
ability to high-dimensional systems and their requirements in
terms of training time and memory utilization. Large memory re-
quirements and/or high training times might hinder the applica-
tion of the models in challenging scenarios, like high-performance
applications in climate forecasting (Kurth et al., 2018). In Figs. 6(a)
and 6(d), we present a Pareto front of the VPT with respect to the
CPU RAM memory utilized to train the models with the highest
VPT for each architecture for an input dimensions of d, = 35 (re-
duced order) and d, = 40 (full dimension) respectively. Figs. 6(b)
and 6(e), show the corresponding Pareto fronts of the VPT with
respect to the training time. In case of the full state-space (d, =
40), the RC is able to achieve superior VPT with smaller memory
usage and vastly smaller training time than the other methods.
However, in the case of reduced order information (d, = 35),
the BPTT algorithms (GRU and LSTM) are superior to the RC even
when the latter is provided with one order of magnitude more
memory.
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Fig. 5. Predicted power spectrum of the RC, GRU, and LSTM networks with the lowest spectrum error forecasting the dynamics of an observable consisting of the
SVD modes of the Lorenz-96 system with forcing F € {8, 10}. The observable consists of the d, = 35 most energetic modes or full state information d, = 40. (a)
Reduced order observable at forcing F = 8. (b) Full state observable at forcing F = 8. (c¢) Reduced order observable at forcing F = 10. (d) Full state observable at
forcing F = 10. RC === GRU == [STM =®=: Groundtruth = = *. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Due to the fact that the RNN models are learning the recurrent
connections, they are able to reach higher VPT when forecasting
in the reduced order space without the need for large mod-
els. In contrast, in RC the maximum reservoir size (imposed by
computer memory limitations) may not be sufficient to capture
the dynamics of high-dimensional systems with reduced order
information and non-local interactions. We argue that this is
the reason why the RC models do not reach the performance of
GRU/LSTM trained with Back-propagation (see Fig. 6(a)).

At the same time, letting memory limitations aside, training of
RC models requires the solution of a linear system of equations
HW! =Y, withH € RW*% W! e R%*b andy e RIW*% (see
Appendix A). The Moore-Penrose method of solving this system,
scales cubically with the reservoir size as it requires the inversion
of a matrix with dimensions dj, x d,. We also tried an approximate
iterative method termed LSQR based on diagonalization, without
any significant influence on the training time. In contrast, the

(or ); Ideal ™ ™ ®. (For interpretation of the references to color in this figure

training time of an RNN is very difficult to estimate a priori, as
convergence of the training method depends on initialization and
various other hyperparameters and are not necessarily dependent
on the size. That is why we observe a greater variation of the
training time of RNN models. Similar results are obtained for
F = 10, the interested reader is referred to the Appendix.

In the following, we evaluate to which extend the trained
models overfit to the training data. For this reason, we measure
the VPT in the training dataset and plot it against the VPT in
the test dataset for every model we trained. This plot provides
insight on the generalization error of the models. The results are
shown in Figs. 6(c), and 6(f) for d, = 35 and d, = 40. Ideally
a model architecture that guards effectively against overfitting,
exhibits a low generalization error, and should be represented by
a point in this plot that is close to the identity line (zero general-
ization error). As the expressive power of a model increases, the
model may fit better to the training data, but bigger models are
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more prone to memorizing the training dataset and overfitting
(high generalization error). Such models would be represented by
points on the right side of the plot. In the reduced order scenario,
GRU and LSTM models lie closer to the identity line than RC
models, exhibiting lower generalization errors. This is due to the
validation-based early stopping routine utilized in the RNNs that
guards effectively against overfitting.

We may alleviate the overfitting in RC by tuning the Tikhonov
regularization parameter (n). However, this requires to rerun the
training for every other combination of hyperparameters. For the
four tested values € {1073, 1074, 107>, 1078} of the Tikhonov
regularization parameter the RC models tend to exhibit higher
generalization error compared to the RNNs trained with BBTT. We
also tested more values n € {107,102, 1073, 1074, 107>, 1075,
10~7, 1078}, while keeping fixed the other hyperparameters,
without any observable differences in the results.

However, in the full-order scenario, the RC models achieve
superior forecasting accuracy and generalization ability as clearly
depicted in Fig. 6(f). Especially the additional regularization of the
training procedure introduced by adding Gaussian noise in the
data was decisive to achieve this result.

An example of an iterative forecast in the test dataset, is
illustrated in Fig. 7 for F = 8 and d, € {35, 40}.

5. Parallel forecasting leveraging local interactions

In spatially extended dynamical systems the state-space
(e.g., vorticity, velocity field, etc.) is high-dimensional (or even
infinite dimensional), since an adequately fine grid is needed to
resolve the relevant spatio-temporal scales of the dynamics. Even
though RC and RNNs can be utilized for modeling and forecasting
of these systems in the short-term, the RC and RNN methods
described in Section 2 do not scale efficiently with the input
dimension, i.e., as the dimensionality of the observable o, € R%
increases. Two limiting factors are the required time and RAM
memory to train the model. As d, increases, the size d, of the
reservoir network required to predict the system using only a
single reservoir rises. This implies higher training times and more
computational resources (RAM memory), which render the prob-
lem intractable for large values of d,. The same applies for RNNs.
More limiting factors arise by taking the process of identification
of optimal model hyperparameters into account, since loading,
storing and processing a very large number of large models can be
computationally infeasible. However, these scaling problems for
large systems can be alleviated in case the system is characterized
by local state interactions or translationally invariant dynamics.
In the first case, as shown in Fig. 8 the modeling and forecast-
ing task can be parallelized by employing multiple individually
trained networks forecasting locally in parallel exploiting the
local interactions, while, if translation invariance also applies, the
individual parallel networks can be identical and training of only
one will be sufficient. This parallelization concept is utilized in
RC in Pathak, Hunt et al. (2018). The idea dates back to local
delay coordinates (Parlitz & Merkwirth, 2000). The model shares
ideas from convolutional RNN architectures (Sainath, Vinyals,
Senior, & Sak, 2015; Shi et al., 2015) designed to capture local
features that are translationally invariant in image and video
processing tasks. In this section, we extend this parallelization
scheme to RNNs and compare the efficiency of parallel RNNs and
RCs in forecasting the state dynamics of the Lorenz-96 model and
Kuramoto-Sivashinsky equation discretized in a fine grid.

5.1. Parallel architecture

Assume that the observable is o; € R% and each element of
the observable is denoted by 0; € R, Vi € {1,...,d,}. In case of

local interactions, the evolution of each element is affected by its
spatially neighboring grid points. The elements o' are split into
Ng groups, each of which consisting of G spatially neighboring
elements such that d, = GN,. The parallel model employs N,
RNNs, each of which is utilized to predict a spatially local region
of the system observable indicated by the G group elements o'.
Each of the N, RNNs receives G inputs o' from the elements i it
forecasts in addition to I inputs from neighboring elements on
the left and on the right, where I is the interaction length. An
example with G = 2 and I = 1 is illustrated in Fig. 8.

During the training process, the networks can be trained inde-
pendently. However, for long-term forecasting, a communication
protocol has to be utilized as each network requires the predic-
tions of neighboring networks to infer. In the case of a homo-
geneous system, where the dynamics are translation invariant,
the training process can be drastically reduced by utilizing one
single RNN and training it on data from all groups. The weights
of this RNN are then copied to all other members of the network.
In the following we assume that we have no knowledge of the
underlying data generating mechanism and its properties, so we
assume the data is not homogeneous.

The elements of the parallel architecture are trained indepen-
dently, while the MPI (Dalcin, Paz, Kler, & Cosimo, 2011; Dalcin,
Paz, Storti, & D’Elia, 2008; Walker & Dongarra, 1996) communi-
cation protocol is utilized to communicate the elements of the
interaction for long-term forecasting.

5.2. Results on the Lorenz-96

In this section, we employ the parallel architecture to fore-
cast the state dynamics of the Lorenz-96 system explained in
Section 4.1 with a state dimension of d, = 40. Note that in
contrast to Section 4.2, we do not construct an observable and
then forecast the reduced order dynamics. Instead, we leverage
the local interactions in the state-space and employ an ensemble
of networks forecasting the local dynamics.

Instead of a single RNN model forecasting the d, = 40
dimensional global state (composed of the values of the state in
the 40 grid nodes), we consider N, = 20 separate RNN models,
each forecasting the evolution of a G = 2 dimensional local
state (composed of the values of the state in 2 neighboring grid
nodes). In order to forecast the evolution of the local state, we
take into account its interaction with I = 4 adjacent grid nodes
on its left and on its right. The group size of the parallel models
is thus G = 2, while the interaction length is I = 4. As a
consequence, each model receives at its input a 2 + G = 10
dimensional state and forecasts the evolution of a local state
composed from 2 grid nodes. The size of the hidden state in RC
is dp € {1000, 3000, 6000, 12000}. Smaller networks of size d;, €
{100, 250, 500} are selected for GRU and LSTM. The rest of the
hyperparameters are given in the Appendix. Results for Unitary
networks are omitted, as the identification of hyperparameters
leading to stable iterative forecasting was computationally heavy
and all trained models led to unstable systems that diverged after
a few iterations.

In Fig. 9(a), we plot the VPT time of the RC and the BPTT
networks. We find that RNN trained by BPTT achieve comparable
predictions with RC, albeit using much smaller number hidden
nodes (between 100 and 500 for BPTT vs 6000 to 12000 for RC).
We remark that RC with 3000 and 6000 nodes have slightly lower
VPT than GRU and LSTM but require significantly lower training
times as shown in Fig. 9(c). At the same time, using 12000 nodes
for RC implies high RAM requirements, more than 3 GB per rank,
as depicted in Fig. 9(b).

As elaborated in Section 4.2 and depicted in Fig. 3(a), the
VPT reached by large nonparallelized models that are forecasting
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Fig. 7. Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 8 in the testing dataset with GRU, LSTM, RC and a Unitary
network along with the true (target) evolution and the associated NRSE contours for the reduced order observable (a) d, = 35 and the full state (b) d, = 40. The
evolution of the component average NRSE (NMRSE) is plotted to facilitate comparison. Unitary networks suffer from propagation of forecasting error and eventually
their forecasts diverge from the attractor. Forecasts in the case of an observable dimension d, = 40 diverge slower as the dynamics are deterministic. In contrast,
forecasting the observable with d, = 35 is challenging due to both (1) sensitivity to initial condition and (2) incomplete state information that requires the capturing
of temporal dependencies. In the full-state setting, RC models achieve superior forecasting accuracy compared to all other models. In the challenging reduced order
scenario, LSTM and GRU networks demonstrate a stable behavior in iterative prediction and reproduce the long-term statistics of the attractor (attractor climate).
In contrast, in the reduced order scenario iterative predictions of RC diverge frequently from the attractor (refer to the Appendix). GRU == [STM =@=; RC-6000
=& RC-9000 ; Unit ==#=_ (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the 40 SVD modes of the system is approximately 1.4. We also instead of the 40 modes of SVD, reach the same predictive per-
verified that the nonparallelized models of Section 4.1 when formance. Consequently, as expected the VPT remains the same
forecasting the 40 dimensional state containing local interactions independently of whether we are forecasting the state or the SVD
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Fig. 8. Illustration of the parallel architecture for a group size of G =2 and an
interaction length of I = 1. The network consists of multiple RNNs with different
parameters. Each RNN is trained to forecast the evolution of G elements of the
observable. Additional information of I elements from each neighboring network
(left and right) are provided as additional input to capture local correlations.

modes. By exploiting the local interactions and employing the
parallel networks, the VPT is increased from ~ 1.4 to =~ 3.9
as shown in Fig. 9(a). The NRMSE error of the best performing
hyperparameters is given in Fig. 10(a). All models are able to re-
produce the climate as the reconstructed power spectrum plotted
in Fig. 10(b) matches the true one. An example of an iterative
prediction with LSTM, GRU and RC models starting from an initial
condition in the test dataset is provided in Fig. 11.

5.3. Kuramoto-Sivashinsky

The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial
differential equation of fourth order that is used as a turbulence
model for various phenomena. It was derived by Kuramoto in
Kuramoto (1978) to model the chaotic behavior of the phase gra-
dient of a slowly varying amplitude in a reaction-diffusion type
medium with negative viscosity coefficient. Moreover, Sivashin-
sky (1977) derived the same equations when studying the instan-
taneous instabilities in a laminar flame front. For our study, we
restrict ourselves to the one dimensional K-S equation

du *u  d%u du
— = —V— = — —U—, (]3)
ot ox*  0x2 0x
on the domain 2 = [0, L] with periodic boundary conditions
u(0,t) = u(L,t). The dimensionless boundary size L directly

affects the dimensionality of the attractor. For large values of L,
the attractor dimension scales linearly with L (Manneville, 1984).

In order to spatially discretize Eq. (13) we select a grid size
Ax with D = L/ Ax + 1 the number of nodes. Further, we denote
with u; = u(iAx) the value of u at node i € {0,...,D — 1}.
In the following, we select v = 1,L = 200, §t = 0.25 and a
grid of d, = 512 nodes. We discretize Eq. (13) and solve it using
the fourth-order method for stiff PDEs introduced in Kassam and
Trefethen (2005) up to T = 6 - 10%. This corresponds to 24 - 10*
samples. The first 4 - 10* samples are truncated to avoid initial
transients. The remaining data are divided to a training and a
testing dataset of 10° samples each. The observable is considered
to be the d, = 512 dimensional state. The Lyapunov time T
of the system (see Section 3) is utilized as a reference timescale.
We approximate it with the method of Pathak (Pathak, Hunt et al.,
2018) for L = 200 and it is found to be T41 &~ 0.094.

5.4. Results on the Kuramoto-Sivashinsky equation

In this section, we present the results of the parallel models
in the Kuramoto-Sivashinsky equation. The full system state is
used as an observable, i.e., d, = 512. The group-size of the
parallel models is set to G = 8, while the interaction length is
I = 8. The total number of groups is N, = 64. Each member
forecasts the evolution of 8 state components, receiving at the
input 24 components in total. The size of the reservoir in RC is
dp € {500, 1000, 3000}. For GRU and LSTM networks we vary
dp € {100, 250, 500}. The rest of the hyperparameters are given
in the Appendix. Results on Unitary networks are omitted, as the
configurations tried in this work led to unstable models diverging
after a few time-steps in the iterative forecasting procedure.

The results are summed up in the bar-plots in Fig. 12. In
Fig. 12(a), we plot the VPT time of the models. LSTM models reach
VPTs of ~ 4, while GRU show an inferior predictive performance
with VPTs of ~ 3.5. An RC with d;, = 500 reaches a VPT of
~ 3.2, and an RC with 1000 modes reaches the VPT of LSTM
models with a VPT of ~ 3.9. Increasing the reservoir capacity
of the RC to d; = 3000 leads to a model exhibiting a VPT of
~ 4.8. In this case, the large RC model shows slightly superior
performance to GRU/LSTM. The low performance of GRU models
can be attributed to the fact that in the parallel setting the
probability that any RNN may converge to bad local minima rises,
with a detrimental effect on the total predictive performance of
the parallel ensemble. In case of spatially translational invariant
systems, we could alleviate this problem by using one single
network. Still, training the single network to data from all spatial
locations would be expensive.

As depicted in Fig. 12, the reservoir size of 3000 is enough
for RC to reach and surpass the predictive performance of RNNs
utilizing a similar amount of RAM memory and a much lower
amount of training time as illustrated in Fig. 12(b).

RC-1000
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RC-12000
GRU-100
GRU-250
GRU-500
LSTM-100
LSTM-250
LSTM-500

VPT Average RAM memory consumption [MB]1e3

(a) Valid prediction time in the test
dataset

(b) Average RAM memory requirement

2 3 0.0 0.5 1.0 15 2.0 2.5
Training time [s] x10*

(c) Training time

Fig. 9. (a) Valid prediction time (VPT), (b) CPU memory utilization and (c) total training time of RNN parallel architectures with group size G = 2 and an interaction
length I = 4 forecasting the dynamics of Lorenz-96 with state dimension d, = 40 (full state). GRU and LSTM results do not depend significantly on network size.
RC with 3000 or 6000 nodes have slightly lower VPT, but require much less training time. Increasing RC size to more than 12000 nodes was not feasible due to

memory requirements.
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The evolution of the NRMSE is given in Fig. 13(a). The pre-
dictive performance of a small LSTM network with 80 hidden
units, matches that of a large RC with 1000 hidden units. In
Fig. 13(b), the power spectrum of the predicted state dynamics
of each model is plotted along with the true spectrum of the
equations. The three models captured successfully the statistics
of the system, as we observe a very good match. An example of
an iterative prediction with LSTM, GRU and RC models starting
from an initial condition in the test dataset is provided in Fig. 14.

. (For interpretation of the references to color in this figure legend, the reader

6. CaLculation of Lyapunov exponents in the Kuramoto-
Sivashinsky equation

The recurrent models utilized in this study can be used as
surrogate models to calculate the Lyapunov exponents (LEs) of
a dynamical system relying only on experimental time series
data. The LEs characterize the rate of separation if positive (or
convergence if negative) of trajectories that are initialized in-
finitesimally close in the phase-space. They can provide an es-
timate of the attractor dimension according to the Kaplan-Yorke
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formula (Kaplan & Yorke, 1979). Early efforts to solve the chal-
lenging problem of data-driven LE identification led to local ap-
proaches (Sano & Sawada, 1985; Wolf, Swift, Swinney, & Vastano,
1985) that are computationally inexpensive at the cost of requir-
ing a large amount of data. Other approaches fit a global model
to the data (Maus & Sprott, 2013) and calculate the LE spectrum
using the Jacobian algorithm. These approaches were applied to
low-order systems.

A recent machine learning approach utilizes deep convolu-
tional neural networks for LE and chaos identification, without
estimation of the dynamics (Makarenko, 2018). An RC-RNN ap-
proach capable of uncovering the whole LE spectrum in high-
dimensional dynamical systems is proposed in Pathak, Hunt et al.
(2018). The method is based on the training of a surrogate RC
model to forecast the evolution of the state dynamics, and the
calculation of the Lyapunov spectrum of the hidden state of
this surrogate model. The RC method demonstrates excellent
agreement for all positive Lyapunov exponents and many of the
negative exponents for the KS equation with L = 60 (Pathak,
Hunt et al., 2018), alleviating the problem of spurious Lyapunov
exponents of delay coordinate embeddings (Dechert & Gengay,
1996). We build on top of this work and demonstrate that a
GRU trained with BPTT can reconstruct the Lyapunov spectrum
accurately with lower error for all positive Lyapunov exponents
at the cost of higher training times.

The Lyapunov spectrum of the KS equation is computed by
solving the KS equations in the Fourier space with a fourth order
time-stepping method called ETDRK4 (Kassam & Trefethen, 2005)
and utilizing a QR decomposition approach as in Pathak, Hunt
et al. (2018). The Lyapunov spectrum of the RNN and RC sur-
rogate models is computed based on the Jacobian of the hidden
state dynamics along a reference trajectory, while Gram-Schmidt

orthonormalization is utilized to alleviate numerical divergence.
We employ a GRU-RNN over LSTM-RNN, due to the fact that the
latter has two coupled hidden states, rendering the computation
of the Lyapunov spectrum mathematically more involved and
computationally more expensive. The interested reader can refer
to the Appendix for the details of the method. The identified
maximum LE is A; ~ 0.08844. In this work, a large RC with
dn, = 9000 nodes is employed for LS calculation in the Kuramoto-
Sivashinsky equation with parameter L = 60 and D = 128 grid
points as in Pathak, Hunt et al. (2018). The largest LE identified
in this case is A; ~ 0.08378 leading to a relative error of 5.3%.
In order to evaluate the efficiency of RNNs, we utilize a large
GRU with d, = 2000 hidden units. An iterative RNN roll-out of
N = 10* total time-steps was needed to achieve convergence of
the spectrum. The largest Lyapunov exponent identified by the
GRU is A7 ~ 0.0849 reducing the error to ~ 4%. Both surrogate
models identify the correct Kaplan-Yorke dimension KY =~ 15,
which is the largest LE such that ) ", A; > 0.

The first 26 Lyapunov exponents computed the GRU, RC as
well as using the true equations of the Kuramoto-Sivashinsky
are plotted in Fig. 15. We observe a good match between the
positive Lyapunov exponents by both GRU and RC surrogates.
The positive Lyapunov exponents are characteristic of chaotic
behavior. However, the zero Lyapunov exponents A; and Ag
cannot be captured either with RC or with RNN surrogates. This is
also observed in RC in Pathak, Hunt et al. (2018), and apparently
the GRU surrogate employed in this work does not alleviate the
problem. In Fig. 15(b), we augment the RC and the GRU spectrum
with these two additional exponents to illustrate that there is
an excellent agreement between the true LE and the augmented
LS identified by the surrogate models. The relative and absolute
errors in the spectrum calculation are illustrated in Fig. 16. After
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Fig. 15. (a) Estimated Lyapunov exponents A of the KS equation with L = 60. The true Lyapunov exponents are illustrated with green crosses, red circles are
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augmenting with the two zero LE, we get a mean absolute error
of 0.012 for RC and 0.008 for GRU. The mean relative error is 0.23
for RC, and 0.22 for GRU. As a conclusion, GRU in par with RC net-
works can be used to replicate the chaotic behavior of a reference
system and calculate the Lyapunov spectrum accurately.

7. Conclusions

In this work, we employed several variants of recurrent neural
networks and reservoir computing to forecast the dynamics of
chaotic systems. We present a comparative study based on their
efficiency in capturing temporal dependencies, evaluate how they
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Fig. 16. (a) Absolute and (b) Relative error of the LE spectrum of the KS equation with L = 60. The LE spectrum identified using the GRU shows a better agreement

with the spectrum identified by the Kuramoto-Sivashinsky equations.

scale to systems with high-dimensional state-space, and how
to guard against overfitting. We highlight the advantages and
limitations of these methods and elucidate their applicability to
forecasting spatiotemporal dynamics.

We considered three different types of RNN cells that alleviate
the well-known vanishing and exploding gradient problem in
Back-propagation through time training (BPTT), namely LSTM,
GRU and Unitary cells. We benchmarked these networks against
reservoir computers with random hidden to hidden connection
weights, whose training procedure amounts to least square re-
gression on the output weights.

The efficiency of the models in capturing temporal depen-
dencies in the reduced order state-space is evaluated on the
Lorenz-96 system in two different forcing regimes F = {8, 10},
by constructing a reduced order observable using Singular Value
Decomposition (SVD) and keeping the most energetic modes.
Even though this forecasting task is challenging due to (1) chaotic
dynamics and (2) reduced order information, LSTM and GRU
show superior forecasting ability to RC utilizing similar amounts
of memory at the cost of higher training times. GRU and LSTM
models demonstrate stable behavior in the iterative forecasting
procedure in the sense that the forecasting error usually does not
diverge, in stark contrast to RC and Unitary forecasts. Large RC
models tend to overfit easier than LSTM/GRU models, as the latter
are utilizing validation-based early stopping and regularization
techniques (e.g., Zoneout, Dropout) that guard against overfitting
which are not directly applicable to RC. Validation in RC amounts
to tuning an additional hyperparameter, the Tikhonov regular-
ization. However, RC shows excellent forecasting efficiency when
the full state of the system is observed, outperforming all other
models by a wide margin, while also reproducing the frequency
spectrum of the underlying dynamics.

RNNs and RC both suffer from scalability problems in high-
dimensional systems, as the required hidden state size d, to
capture the high-dimensional dynamics can become prohibitively
large especially with respect to the computational expense of
training. In order to scale the models to high-dimensional sys-
tems we employ a parallelization scheme that exploits the local
interactions in the state of a dynamical system. As a reference,
we consider the Lorenz-96 system and the Kuramoto-Sivashinsky
equation, and we train parallel RC, GRU, and LSTM models of
various sizes. Iterative forecasting with parallel Unitary mod-
els diverged after a few time-steps in both systems. Parallel
GRU, LSTM and RC networks reproduced the long-term attractor
climate, as well as the power spectrum of the state of the Lorenz-
96 and the Kuramoto-Sivashinsky equation matched with the
predicted ones.

In the Lorenz-96 and the Kuramoto-Sivashinsky equation, the
parallel LSTM and GRU models exhibited similar predictive per-
formance compared to the parallel RC. The memory requirements
of the models are comparable. RC networks require large reser-
voirs with 1000-6000 nodes per member to reach the predictive
performance of parallel GRU/LSTM with a few hundred nodes, but
their training time is significantly lower.

Last but not least, we evaluated and compared the efficiency
of GRU and RC networks in capturing the Lyapunov spectrum of
the KS equation. The positive Lyapunov exponents are captured
accurately by both RC and GRU. Both networks cannot reproduce
two zero LEs A; and Ag. When these two are discarded from the
spectrum, GRU and RC networks show comparable accuracy in
terms of relative and absolute error of the Lyapunov spectrum.

Further investigation on the underlying reasons why the RNNs
and RC cannot capture the zero Lyapunov exponents is a matter
of ongoing work. Another interesting direction could include
studying the memory capacity of the networks. This could offer
more insight into which architecture and training method is
appropriate for tasks with long-term dependencies. Moreover, we
plan to investigate a coupling of the two training approaches
to further improve their predictive performance, for example a
network can utilize both RC and LSTM computers to identify
the input to output mapping. While the weights of the RC are
initialized randomly to satisfy the echo state property, the output
weights alongside with the LSTM weights can be optimized by
back-propagation. This approach, although more costly, might
achieve higher efficiency, as the LSTM is used as a residual model
correcting the error that a plain RC would have.

Although we considered a batched version of RC training to
reduce the memory requirements, further research is needed to
alleviate the memory burden associated with the matrix inver-
sion (see Appendix A, (15)) and the numerical problems asso-
ciated with the eigenvalue decomposition of the sparse weight
matrix.

Further directions could be the initialization of RNN weights
with RC based heuristics based on the echo state property and
fine-tuning with BPTT. This is possible for the plain cell RNN,
where the heuristics are directly applicable. However, in more
complex architectures like the LSTM or the GRU, more sophis-
ticated initialization schemes that ensure some form of echo
state property have to be investigated. The computational cost
of training networks of the size of RC with back-propagation
is also challenging. Another interesting topic, is to analyze the
influence of the amount of training data, and network size on
the predictive efficiency of the methods, under the lens of the
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recently discovered “double descent” curve phenomenon (Belkin,
Hsu, Ma, & Mandal, 2019), where over-parametrized networks
(increasing model capacity beyond the point of interpolation)
results in improved generalization.

One topic not covered in this work, is invertibility of the
models, when forecasting the full state dynamics. Non-invertible
models like the RNNs trained in this work, may suffer from spu-
rious dynamics not present the training data and the underlying
governing equations (Frouzakis, Gardini, Kevrekidis, Millerioux,
& Mira, 1997; Gicquel, Anderson, & Kevrekidis, 1998). Invertible
RNNs may constitute a promising alternative to further improve
accurate short-term prediction and capturing of the long-term
dynamics.

In conclusion, recurrent neural networks for data-driven sur-
rogate modeling and forecasting of chaotic systems can effi-
ciently be used to model high-dimensional dynamical systems,
can be parallelized alleviating scaling problems and constitute a
promising research subject that requires further analysis.

Data and code

The code and data that support the findings of this study
are openly available in the GitHub repository https://github.com/
pvlachas/RNN-RC-Chaos to assist reproducibility of the results.
The software was written in Python utilizing Tensorflow (Abadi
et al,, 2016) and Pytorch (Paszke et al., 2017) for automatic dif-
ferentiation and the design of the neural network architectures.
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Appendix A. Memory efficient implementation of RC training

In order to alleviate the RAM requirement for the computation
of the RC weights we resort to a batched approach. Assuming the
hidden reservoir size is given by h € R%, by teacher forcing the
RC network with true data from the system for dy time-steps and
stacking the evolution of the hidden state in a single matrix we
end up with matrix H € R%*%_ Moreover, by stacking the target
values, which are the input data shifted by one time-step, we end
up in the target matrix Y € R9*9% where d, is the dimension of

the observable we are predicting. In order to identify the output
weights W,,; € R%*% we need to solve the linear system of
dy - d, equations

HW! =Y. (14)

out

A classical way to solve this system of equations is based on
the Moore-Penrose inverse (pseudo-inverse) computed using

—1
W,y = YTH(HTH +nl> (15)
Y n

where 7 is the Tikhonov regularization parameter and I the unit
matrix. In our case dy is of the order of 10° and dy > dp.
To reduce the memory requirements of the training method, we
compute the matrices H = H'H € R%*% and Y = Y'H € R%*%
in a time-batched schedule. o

Specifically, we initialize Y = 0 and H = 0. Then every d,
time-steps with d, < dy, we compute the batch matrix H, =
H/H, € R%*d, where H, € R™*% js formed by the stacking
the hidden state only for the last d, time-steps. In the same way,
we compute Y, = Y'H, € R%>, where Y, € R™*% is formed
by the stacking of the target data for the last d, time-steps. After
every batch computation we update our beliefs with H <— H+H,
and Y <~ Y+Y,.

In addition, we also experimented with two alternative solvers
for the linear system Eq. (14) in the Lorenz-96. We tried a dedi-
cated regularized least-squares routine utilizing an iterative pro-
cedure (scipy.sparse.linalg.1lsqr) and a method based on
stochastic gradient descent. We considered the solver as an addi-
tional hyperparameter of the RC models. After testing the solvers
in Lorenz-96 systems, we found out that the method of pseudo-
inverse provides the most accurate results. For this reason, and
to spare computational resources, we used this method for the
Kuramoto-Sivashinsky system.

Appendix B. Regularizing training with noise

In our study, we investigate the effect of noise to the training
data. In Fig. 17, we plot the Valid Prediction Time (VPT) in the
testing data with respect to the VPT that each model achieves in
the training data. We find out that RC models trained with addi-
tional noise of 5-10%, not only achieve better generalization, but
their forecasting efficiency improves in both training and testing
dataset. Moreover, the effect of divergent predictions by iterative
forecasts is alleviated significantly. In contrast, adding noise does
not seem to have an important impact on the performance of GRU
models.

Appendix C. Dimensionality reduction with singular value de-
composition

Singular Value Decomposition (SVD) can be utilized to perform
dimensionality reduction in a dataset by identifying the modes
that capture the highest variance in the data and then perform-
ing a projection on these modes. Assuming that a data matrix
is given by stacking the time-evolution of a state u € D as
U = [uy, uy, ..., uy], where the index N is the number of data
samples. By subtracting the temporal mean u and stacking the
data, we end up with the data matrix U € R™*P, Performing SVD
on U leads to

U=MXV', MeRVN X ecrVP veRP*D, (16)

with ¥ diagonal, with descending diagonal elements. The columns
of matrix V are considered the modes of the SVD, while the
square D singular values of X' correspond to the data variance
explained by these modes. This variance is also referred to as
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Fig. 17. VPT in the testing data plotted against VPT in the training data for RC and GRU models trained with added noise of different levels in the data. Noise only
slightly varies the forecasting efficiency in GRU networks. In contrast, the effectiveness of RC in forecasting the full-order system is increased as depicted in plots
(b) and (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Energy spectrum of Lorenz-96.

energy. In order to calculate the percentage of the total energy
the square of the singular value of each mode has to be divided
by the sum of squares of the singular values of all modes. In
order to reduce the dimensionality of the dataset, we first have
to decide on the reduced order dimension rg, < D. Then
we identify the eigenvectors corresponding to the most high-
energetic eigenmodes. These are given by the first columns V;
of V, ie.,, V = [V, V_;]. We discard the low-energetic modes
V_,. The dimension of the truncated eigenvector matrix is V; €
RP*7aim In order to reduce the dimensionality of the dataset, each

vector u € D is projected to u, € rg, by

c=Vlu, ceRdm, (17)

In the Lorenz-96 system, we construct a reduced order observ-
able with d, = 35 modes of the system. The cumulative energy
distribution along with a contour plot of the state and the mode
evolution is illustrated in Fig. 18.

Appendix D. Calculation of Lyapunov spectrum

The true Lyapunov exponents of the KS equation are computed
as in Pathak, Hunt et al. (2018) by solving the KS equations
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Fig. 19. Violin plots with kernel density estimates of the number of divergent predictions over the 100 initial conditions from the test data, over all hyperparameter
sets for RC, GRU, LSTM, and Unitary networks, for reduced order state d, = 35 and full order state d, = 40 in two forcing regimes (a) F = 8 and (b) F = 10 in the
Lorenz-96 system. Most hyperparameter sets of Unitary networks, lead to models that diverge in iterative forecasting in both reduced order and full order scenario
for both F € {8, 10}. Although the divergence effect is a non-issue in RC in the full state scenario d, = 40, indicated by the wide part in the lower end of the density
plot, the effect is more prominent in the reduced order scenario compared to GRU and LSTM. Identification of hyperparameters for LSTM and GRU networks that
show stable iterative forecasting behavior in the reduced order space is significantly easier compared to RC and Unitary networks, as indicated by the wide/thin

lines in the lower part of the density plots of the first/latter. RC ; GRU
legend, the reader is referred to the web version of this article.)

in the Fourier space with a fourth order time-stepping method
called ETDRK4 (Kassam & Trefethen, 2005) and utilizing a QR
decomposition approach. The trained RNN model with GRU cell
is used as a surrogate to compute the full Lyapunov spectrum of
the Kuramoto-Sivashinsky system. Recall that the RNN dynamics
are given by

h; =f}?(°t’ h;_1)
01 =fho(hr)’

where f! is the hidden-to-hidden and f? is the hidden-to-output
mapping, 0 € R% is an observable of the state, and h, € R% is
the hidden state of the RNN. All models utilized in this work share
this common architecture. They only differ in the forms of f” and
fh”. More importantly, the output mapping is linear, i.e.,

Ot +1 =fho(ht) =W, h,. (19)

The LEs are calculated based on the Jacobian | = dgthj]

the hidden state dynamics along the trajectory. In the following
we compute the Jacobian using Eq. (18). By writing down the
equations for two consecutive time-steps, we get

(18)

Time-step t — 1: hy_y = (0,1, he_3) (20)
O¢ :fho(htq) = Woh,—4 (21)

Time-step ¢ : h, = f(o;, hy_1). (22)

The partial Jacobians needed to compute the total Jacobian are:

9 h

Uy =Ji ¢ RIxd (23)

a0

affh N

ZTZ =Ji" e R%* (24)

ofy oh doxd

—L = e R%>, 25

o = (25)

In total we can write:

dh, _ dfhh(ot, he—1) _ 3f;f(0t» he_1) do; 3fhh(0u he—1)

dh[,1 - dht,1 30{ 3’1[,1 8h[,1
(26)

dh, _ afhh(ofv he_1) 0f(he—1) 3fhh(0ry he_1) (27)
dh[_l 80t ah[_l ah[_]

dh
=l SR+ (28)

t=1 (0c,he—1) he—1 (0r,he—1)

——

evaluated at t evaluated at t-1 evaluated at t

; LSTM

; Unit . (For interpretation of the references to color in this figure

A product of this Jacobian along the orbit § is developed and iter-
atively orthonormalized every T, steps using the Gram-Schmidt
method to avoid numerical divergence and keep the columns of
the matrix R independent. We check the convergence criterion by
tracking the estimated LE values every T. time-steps. The input
provided to the algorithm is a short time series of length T,, to
initialize the RNN and warm-up the hidden state 0;.1,+1 (where
the tilde denotes experimental or simulation data), the length of
this warm-up time series T,,, the number of the LE to calculate N,
the maximum time to unroll the RNN T, a normalization time T,
and an additional threshold ¢ used as an additional termination
criterion. The function ColumnSum(-) computes the sum of each
column of a matrix, i.e., sum(-, axis = 1). This method can
be applied directly to RNNs with one hidden state like RC or
GRUs. An adaptation to the LSTM is left for future research. The
pseudocode of the algorithm to calculate the Lyapunov exponents
of the RNN is given in Algorithm 1.

Appendix E. Model hyperparameters

The hyperparameter values used to tune the models for fore-
casting the dynamics of the Lorenz-96 system in the reduced and
full order PCA mode (observable) space with d, € {35, 40}, are
reported on Table 2 for RC, Table 3 for the GRU/LSTM models,
and Table 4 for Unitary networks. For the parallel architectures in
the state-space of Lorenz-96 the hyperparameters are reported
on Table 5 for the parallel RC, and on Table 6 for the parallel
GRU/LSTM models. For the parallel architectures forecasting the
dynamics of the state-space of the Kuramoto-Sivashinsky equa-
tion the hyperparameters are reported on Tables 7 and 8 for the
parallel RC and GRU/LSTM models respectively. We note here
that in the case of the RNNs trained with BPTT, the optimizer
used to update the network and its hyperaparameters can also
be optimized. To alleviate the computational burden we stick to
Adam with its default hyperparameter values (8; = 0.9 and
B2 = 0.999).

Appendix F. Additional results - Lorenz-96 - divergence of
unitary and RC RNNs

In this section, we try to quantify the divergence effect due to
the accumulation of the forecasting error in the iterative predic-
tion. In Fig. 19 we present violin plots with fitted kernel density
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Fig. 20. Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 8 in the testing dataset with GRU, LSTM, RC and a Unitary
network along with the true (target) evolution and the associated NRSE contours for the reduced order observable (a) d, = 35 and the full state (b) d, = 40. The
evolution of the component average NRSE (NMRSE) is plotted to facilitate comparison. Unitary networks suffer from propagation of forecasting error and eventually
their forecasts diverge from the attractor. Forecasts in the case of an observable dimension d, = 40 diverge slower as the dynamics are deterministic. In contrast,
forecasting the observable with d, = 35 is challenging due to both (1) sensitivity to initial condition and (2) incomplete state information that requires the capturing
of temporal dependencies. In the full-state setting, RC models achieve superior forecasting accuracy compared to all other models. In the challenging reduced order
scenario, LSTM and GRU networks demonstrate a stable behavior in iterative prediction and reproduce the long-term statistics of the attractor. In contrast, in the
reduced order scenario RC suffer from frequent divergence. The divergence effect is illustrated in this chosen initial condition. GRU *; LSTM ==@=: RC-6000 ==ill=;
RC-9000 ; Unit ==#=_ (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

estimates for the number of divergent predictions of each hyper- {35, 40}. The annotated lines denote the minimum, mean and
parameter set, computed based on all tested hyperparameter sets maximum number of divergent predictions over the 100 initial
for forcing regimes F € {8, 10} and observable dimensions d, € conditions of all hyperparameter sets. In the fully observable
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Forecasting results on the dynamics of an observable consisting of the SVD modes of the Lorenz-96 system with F = 10 and state dimension 40. The

observable consists of the d, € {35, 40} most energetic modes. (a), (d) Valid prediction time (VPT) plotted w.r.t. the required RAM memory for dimension d, € {35, 40}.
(b), (e) VPT plotted w.r.t. training time for dimension d, € {35, 40}. (c), (f) VPT measured from 100 initial conditions sampled from the test data plotted w.r.t. VPT
from 100 initial conditions sampled from the training data for each model for d, € {35, 40}. In the reduced order scenario, RCs tend to overfit easier compared to

GRUs/LSTMs that utilize validation-based early stopping. RC == GRU
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Table 2
Hyperparameters of RC for Lorenz-96.
Hyperparameter Explanation Values
D, Reservoir size {6000, 9000, 12000, 18000}
N Training data samples 10°
Solver Pseudoinverse/LSQR/Gradient descent
d Degree of W), {3, 8}
p Radius of Wy j, {0.4, 0.8, 0.9, 0.99}
w Input scaling {0.1, 0.5, 1.0, 1.5, 2.0}
n Regularization {1073, 1074, 107>, 1076}
d, Observed state dimension {35, 40}
Ny Warm-up steps (testing) 2000
Kn Noise level in data {0, 0.5%, 1%}
Table 3
Hyperparameters of GRU/LSTM for Lorenz-96.
Hyperparameter Explanation Values
dp Hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N Training data samples 10°
B Batch-size 32
K1 BPTT forward time-steps {1, 8}
) BPTT truncated backprop. length {8, 16}
K3 BPTT skip gradient parameter =ky+Kk1—1
n Initial learning rate 10°3
p Zoneout probability {0.99, 0.995 1.0}
d, Observed state dimension {35, 40}
ny, Warm-up steps (testing) 2000
Kn Noise level in data {0, 0.2%}

systems d, = 40, in both forcing regimes

are many models (hyperparameter sets) with zero divergent pre-
dictions for RC, GRU and LSTM, as illustrated by the wide lower
part of the violin plot. In contrast, most hyperparameter sets
in Unitary networks lead to models whose iterative predictions
diverge from the attractor, as illustrated by the wide upper part

F e ({8,10}, there

in the violin plot. In the reduced order scenario, this divergence
effect seems to be more prominent in RC and Unitary networks, as
indicated by the very thin lower part of their violin plots, for both
forcing regimes. In contrast, many hyperparameter sets of GRU
and LSTM models lead to stable iterative prediction. This indicates
that hyperparameter tuning in RC and Unitary networks when the
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Fig. 22. Contour plots of a spatio-temporal forecast on the SVD modes of the Lorenz-96 system with F = 10 in the testing dataset with GRU, LSTM, RC and
a Unitary network along with the true (target) evolution and the associated NRSE contours for the reduced order observable (a) d, = 35 and the full state (b)
d, = 40. The evolution of the component average NRSE (NMRSE) is plotted to facilitate comparison. Unitary networks suffer from propagation of forecasting error
and eventually their forecasts diverge from the attractor. Forecasts in the case of an observable dimension d, = 40 diverge slower as the dynamics are deterministic.
In contrast, forecasting the reduced order observable with d, = 35 is challenging due to both (1) sensitivity to initial condition and (2) incomplete state information
that requires the capturing of temporal dependencies. In the full-state setting, RC models achieve superior forecasting accuracy compared to all other models. In
the challenging reduced order scenario, LSTM and GRU networks demonstrate a stable behavior in iterative prediction and reproduce the long-term statistics of
the attractor (attractor climate). In contrast, in the reduced order scenario iterative predictions of RC diverge frequently from the attractor. GRU ; LSTM ==
RC-6000 === RC-9000 ; Unit ==#=_(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Hyperparameters of Unitary Evolution networks for Lorenz-96.
Hyperparameter Explanation Values
dp Hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N Training data samples 10°
B Batch-size 32
K1 BPTT forward time-steps {1, 8}
Ko BPTT truncated backprop. length {8, 16}
K3 BPTT skip gradient parameter =Ky +Kk1— 1
n Initial learning rate 103
D Zoneout probability 1.0
d, Observed state dimension {35, 40}
n, Warm-up steps (testing) 2000
Kn Noise level in data {0, 0.2%}

Algorithm 1 Algorithm to calculate Lyapunov Exponents of a trained surrogate RNN model

procedure LE_RNN(01.7,, 1, Ty, N, T, Ty, €)
Initialize hg < 0.
fort=1:T, do
| h, <—fhh(5t7 h;_1)
end for
hy < hy,
0 < ETu,+1
Pick a random orthonormal matrix § € R *NE
T« T/T, _
Initialize R < 0 € RV¥T,
ey, | < 0 € RN
Jo < Vaf(ho).
fort =1:T do
h, <—f,,h(0t7 h;_1)
011 <—f;f(ht)
< Vhfhh(0t+1, he).
Jo < Voff(0r11, hy).
J<Ji+Jz2Jo
6«—]J-6
if mod (t, Thorm) = 0 then
Q,R < QR(3)
8 < Q[ :N]
R[:, t/Tnorm] < log(diag(R[: N, : N1))
if mod (t,T.) =0 then _
I < Real(ColumnSum(R))/(t * 8t)
I < sort(l)
d<|l- lprev|2
if d < ¢ then
| break
end if
end if
end if
Jo < Vaf{(h,).
end for
return [
end procedure

> Warming-up the hidden state of the RNN based on true data

> Initializing N deviation vectors

> Initializing the N LE to zero.

> Evolve the RNN dynamics

> Calculating the partial Jacobians

> Calculating the total Jacobian

> Evolving the deviation vectors §

> Re-orthonormalizing with QR-decomposition

> Replacing the deviation vectors with the columns of Q

> Checking the convergence criterion
> Divide with the total timespan

> Returning the estimated Lyapunov Exponents

system state is not fully observed, is cumbersome compared to
LSTM and GRU networks. One example of this divergence effect in
an initial condition from the test dataset is illustrated in Fig. 20.
The RC and the Unitary networks diverge in the reduced order
state predictions after approximately two Lyapunov times.

Appendix G. Additional results - Lorenz-96 - F = 10

In Fig. 21, we provide additional results for the forcing regime
F = 10 that are in agreement with the main conclusions drawn in
the main manuscript for the forcing regime F = 8. An example of
a single forecast of the models starting from an initial condition
in the test dataset is given in Fig. 22.

Appendix H. Temporal dependencies and backpropagation

In our study, in order to train the GRU and LSTM models
with back-propagation through time (BPTT), we need to tune the
parameters k1 and «,. The first one denotes the truncated back-
propagation length (also referred to as sequence length) and the
second the number of future time-steps used to compute the loss
and backpropagate the gradient during training at each batch.
In the hyperparameter study considered in this work, we varied
k1 € {8, 16} and «, € {1, 8}. For each of these hyperparameter
sets, we varied all other hyperparameters according to the grid
search reported in Appendix E.
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Table 5
Hyperparameters of Parallel RC for Lorenz-96.
Hyperparameter Explanation Values
D, Reservoir size {1000, 3000, 6000, 12000}
Ng Number of groups 20
G Group size 2
I Interaction length 4
N Training data samples 10°
Solver Pseudoinverse/LSQR/Gradient descent
d Degree of Wy, 10
0 Radius of Wy, 0.6
w Input scaling 0.5
n Regularization 1076
d, Observed state dimension 40
Ny Warm-up steps (testing) 2000
14 175
12 GRU-8-1 150 GRU-8-1
0 GRU-16-1 Las GRU-16-1
o GRU-8-8 ' GRU-8-8
- 1.00
£ GRU-16-8 £ GRU-16-8
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Reduced order dimension Reduced order dimension
(a) F=8 (b) F =10

Fig. 23. Violin plots of the VPT in the testing data for stateful LSTM and GRU models trained with different truncated Backpropagation through time parameters
k1 and k; in the (reduced) SVD mode observable of the Lorenz-96 system. The legend of each plot reports the models along with their x; — x; parameters used to
train them. The three markers report the minimum, mean and maximum VPT. We observe that especially in the reduced order observable scenario (dy = 35), having
a large truncated back-propagation parameter «; (also referred to as sequence length) is vital to capture the temporal dependencies in the data and achieve high
forecasting efficiency. In contrast in the full-state scenario (dy = 40) a model with a small back-propagation horizon suffices. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. The average VPT measured from 100 initial conditions sampled from the test dataset is plotted against the average VPT measured from 100 initial
conditions sampled from the training dataset for parallel models forecasting the dynamics of (a) the Lorenz-96 system with state dimension d, = 40 and (b) the

Kuramoto-Sivashinsky equation with state dimension d, = 512. RC O; GRU
is referred to the web version of this article.)

In Fig. 23 we present a violin plot, that illustrates the forecast-
ing efficiency of LSTM and GRU models trained with the listed
k1 and k, (legend of the plot), while varying all other hyperpa-
rameters. The forecasting efficiency is quantified in terms of the
Valid Prediction Time (VPT) in the test dataset (averaged over 100
initial conditions) on the Lorenz-96 system for F € {8, 10}. The
three bars in each violin plot, denote the minimum, average and
maximum performance.

In the reduced order scenario case, we observe that models
with a large sequence length «; and a large prediction length
ko are pivotal in order to achieve a high forecasting efficiency.
This implies that there are temporal correlations in the data that
cannot be easily captured by other models with smaller horizons.
In contrast, in the full order scenario, models with smaller «;

; LSTM O, (For interpretation of the references to color in this figure legend, the reader

perform reasonably well, demonstrating that the need of cap-
turing temporal correlations in the data in order to forecast the
evolution is less prominent, since the full information of the state
of the system is available.

Appendix 1. Over-fitting of parallel models

In this section, we provide results on the overfitting of the
models in the parallel setting in the Lorenz-96 model in Fig. 24(a)
and the Kuramoto-Sivashinsky equation in Fig. 24(b). In both
cases we do not observe overfitting issues as the predictive per-
formance in terms of the VPT of the models in the test dataset
is very close to that in the training dataset, emphasizing that the
generalization ability of the models is good.
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Table 6
Hyperparameters of Parallel GRU/LSTM for Lorenz-96.
Hyperparameter Explanation Values
dp Hidden state size {100, 250, 500}
Ng Number of groups 20
G Group size 2
I Interaction length 4
N Training data samples 10°
B Batch-size 32
K1 BPTT forward time-steps 4
Ko BPTT truncated backprop. length 4
K3 BPTT skip gradient parameter 4
n Initial learning rate 1073
p Zoneout probability {0.998, 1.0}
d, Observed state dimension 40
Ny, Warm-up steps (testing) 2000
Table 7

Hyperparameters of Parallel RC for Kuramoto-Sivashinsky.

Hyperparameter Explanation Values

D, Reservoir size {500, 1000, 3000, 6000, 12000}
Ng Number of groups 64
G Group size 8
I Interaction length 8
N Training data samples 10°
Solver Pseudoinverse
d Degree of W), 10
P Radius of Wy j, 0.6
10} Input scaling 1.0
n Regularization 10
d, Observed state dimension 512
Ny Warm-up steps (testing) 2000
Table 8

Hyperparameters of Parallel GRU/LSTM for Kuramoto-Sivashinsky.

Hyperparameter Explanation Values

dp Hidden state size {80, 100, 120}

Ng Number of groups 64

G Group size 8

I Interaction length 8

N Training data samples 10°

B Batch-size 32

K1 BPTT forward time-steps 4

Ko BPTT truncated backprop. length 4

K3 BPTT skip gradient parameter 4

n Initial learning rate 103

p Zoneout probability {0.998, 1.0}

do Observed state dimension 512

Ny Warm-up steps (testing) 2000
References

Abadi, M., Barham, P., Chen, ], Chen, Z, Davis, A, Dean, ], et al. (2016).
Tensorflow: A system for large-scale machine learning. In 12th USENIX sym-
posium on operating systems design and implementation (pp. 265-283). URL:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

Abarbanel, H. (2012). Analysis of observed chaotic data. Springer Science &
Business Media.

Aksamit, N. O., Sapsis, T. P., & Haller, G. (2019). Machine-learning ocean dynamics
from Lagrangian drifter trajectories. arXiv preprint arXiv:1909.12895.

Antonik, P., Haelterman, M., & Massar, S. (2017). Brain-inspired photonic signal
processor for generating periodic patterns and emulating chaotic systems.
Physical Review Applied, 7, 054014, http://dx.doi.org/10.1103/PhysRevApplied.
7.054014, URL: https://link.aps.org/doi/10.1103/PhysRevApplied.7.054014.

Arjovsky, M., Shah, A., & Bengio, Y. (2016). Unitary evolution recurrent neural
networks. In Proceedings of the 33rd international conference on international
conference on machine learning: Vol. 48, (pp. 1120-1128). JMLR.org, URL:
http://dl.acm.org/citation.cfm?id=3045390.3045509.

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of the
National Academy of Sciences, 116, 15849-15854.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. I[EEE Transactions on Neural Networks, 5,
157-166. http://dx.doi.org/10.1109/72.279181.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C,, Rizzi, A., & Jenssen, R. (2017). An
overview and comparative analysis of recurrent neural networks for short
term load forecasting. CoRR, abs/1705.04378, URL: http://arxiv.org/abs/1705.
04378, arXiv:1705.04378.

Bradley, E., & Kantz, H. (2015). Nonlinear time-series analysis revisited. Chaos.
An Interdisciplinary Journal of Nonlinear Science, 25, 097610. http://dx.doi.org/
10.1063/1.4917289.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et
al. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Brunton, S. L., Noack, B. R, & Koumoutsakos, P. (2020). Machine learning for
fluid mechanics. Annual Review of Fluid Mechanics, 52, 477-508.

Cao, L, Hong, Y., Fang, H., & He, G. (1995). Predicting chaotic time series
with wavelet networks. Physica D: Nonlinear Phenomena, 85, 225-238. http:
//dx.doi.org/10.1016/0167-2789(95)00119-0, URL: http://www.sciencedirect.
com/science/article/pii/0167278995001190.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., et al. (2014). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In Proceedings of
the 2014 conference on empirical methods in natural language processing
(pp. 1724-1734). Association for Computational Linguistics, http://dx.doi.org/
10.3115/v1/D14-1179, URL: http://aclweb.org/anthology/D14-1179.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NIPS 2014 workshop on
deep learning.

Dalcin, L. D., Paz, R. R, Kler, P. A, & Cosimo, A. (2011). Parallel distributed
computing using Python. Advances in Water Resources, 34, 1124-1139.

Dalcin, L., Paz, R, Storti, M., & D’Elia, J. (2008). MPI for Python: Performance
improvements and MPI-2 extensions. Journal of Parallel and Distributed
Computing, 68, 655-662.

Dechert, W. D., & Gengay, R. (1996). The topological invariance of Lyapunov
exponents in embedded dynamics. Physica D. Nonlinear Phenomena, 90,
40-55. http://dx.doi.org/10.1016/0167-2789(95)00225- 1.

Dong, D., Wu, H, He, W, Yu, D, & Wang, H. (2015). Multi-task learn-
ing for multiple language translation. In Proceedings of the 53rd annual
meeting of the association for computational linguistics and the 7th interna-
tional joint conference on natural language processing: Vol. 1: Long Papers,
(pp. 1723-1732).

Dreyfus, S. (1962). The numerical solution of variational problems. Journal of
Mathematical Analysis and Applications, 5, 30-45.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Esteva, A., Kuprel, B., Novoa, R. A, Ko, ]J., Swetter, S. M., Blau, H. M., et al. (2017).
Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(115).

Faller, W. E., & Schreck, S. J. (1997). Unsteady fluid mechanics applications of
neural networks. Journal of Aircraft, 34, 48-55. http://dx.doi.org/10.2514/2.
2134.

Frouzakis, C. E., Gardini, L., Kevrekidis, I. G., Millerioux, G., & Mira, C. (1997). On
some properties of invariant sets of two-dimensional noninvertible maps.
International Journal of Bifurcation and Chaos, 7, 1167-1194.

Gal, Y., & Ghahramani, Z. (2016). A theoretically grounded application of
dropout in recurrent neural networks. In D. D. Lee, M. Sugiyama, U.
V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural informa-
tion processing systems: Vol. 29, (pp. 1019-1027). Curran Associates, Inc.,
URL: http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-
of-dropout-in-recurrent-neural-networks.pdf.

Gicquel, N., Anderson, J., & Kevrekidis, 1. (1998). Noninvertibility and resonance
in discrete-time neural networks for time-series processing. Physics Letters.
A, 238, 8-18.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 249-256).

Gneiting, T., & Raftery, A. E. (2005). Weather forecasting with ensemble methods.
Science, 310, 248-249.

Gonon, L., & Ortega, J. P. (2019). Reservoir computing universality with stochastic
inputs. [EEE Transactions on Neural Networks Learning Systems.

Goodfellow, I, Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with
recurrent neural networks. In International conference on machine learning
(pp. 1764-1772).

Greff, K., Srivastava, R. K., Koutik, J., Steunebrink, B. R., & Schmidhuber, ]. (2016).
LSTM: A search space odyssey. IEEE Transactions on Neural Networks Learning
Systems, 28, 2222-2232.

Grigoryeva, L., & Ortega, ]. P. (2018). Echo state networks are universal. Neural
Networks, 108, 495-508.

Ha, D., & Schmidhuber, ]. (2018). World models. arXiv preprint arXiv:1803.10122.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-
inspired artificial intelligence. Neuron, 95, 245-258.

Haynes, N. D., Soriano, M. C.,, Rosin, D. P., Fischer, I, & Gauthier, D. ]. (2015).
Reservoir computing with a single time-delay autonomous boolean node.
Physical Review E, 91, 020801. http://dx.doi.org/10.1103/PhysRevE.91.020801,
URL: https://link.aps.org/doi/10.1103/PhysRevE.91.020801.



216 P.R. Vlachas, J. Pathak, B.R. Hunt et al. / Neural Networks 126 (2020) 191-217

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE conference on computer vision and pattern recognition
(pp. 770-778).

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 6, 107-116. http://dx.doi.org/10.1142/
S0218488598000094.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9, 1735-1780. http://dx.doi.org/10.1162/nec0.1997.9.8.1735.
Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication.
Science, 304, 78-80. http://dx.doi.org/10.1126/science.1091277, URL:
http://science.sciencemag.org/content/304/5667/78, arXiv:http://science.

sciencemag.org/content/304/5667/78.full.pdf.

Jiang, J., & Lai, Y. C. (2019). Model-free prediction of spatiotemporal dynam-
ical systems with recurrent neural networks: Role of network spectral
radius. Phys. Rev. Res., 1, 033056. http://dx.doi.org/10.1103/PhysRevResearch.
1.033056, URL: https://link.aps.org/doi/10.1103/PhysRevResearch.1.033056.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, ]., Skirlo, S. A., LeCun, Y., et al. (2017).
Tunable efficient unitary neural networks (EUNN) and their application to
rnns. In ICML, PMLR (pp. 1733-1741).

Jozefowicz, R, Zaremba, W., & Sutskever, I. (2015). An empirical exploration
of recurrent network architectures. In Proceedings of the 32nd interna-
tional conference on international conference on machine learning: Vol. 37,
(pp. 2342-2350). JMLR.org, URL: http://dl.acm.org/citation.cfm?id=3045118.
3045367.

Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. New York, NY,
USA: Cambridge University Press.

Kaplan, J. L, & Yorke, ]J. A. (1979). Chaotic behavior of multidimensional
difference equations. In H. O. Peitgen, & H. O. Walther (Eds.), Functional
differential equations and approximation of fixed points (pp. 204-227). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Kassam, A., & Trefethen, L. (2005). Fourth-order time-stepping for stiff pdes.
SIAM Journal on Scientific Computing, 26, 1214-1233. http://dx.doi.org/10.
1137/S1064827502410633.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
3rd international conference on learning representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, conference track proceedings.

Koopman, B. O. (1931). Hamiltonian systems and transformation in hilbert space.
Proceedings of the National Academy of Sciences of the United States of America,
17(315).

Krischer, K., Rico-Martinez, R., Kevrekidis, I. G., Rotermund, H. H., Ertl, G, &
Hudson, ]J. L. (1993). Model identification of a spatiotemporally varying
catalytic reaction. AIChE Journal, 39(1), 89-98.

Krueger, D., Maharaj, T., Kramadr, J., Pezeshki, M., Ballas, N., Ke, N. R,, et al. (2017).
Zoneout: Regularizing rnns by randomly preserving hidden activations.
In 5th international conference on learning representations. Conference track
proceedings (pp. 24-26). URL: https://openreview.net/forum?id=rJqBEPcxe.

Kuramoto, Y. (1978). Diffusion-induced chaos in reaction systems. Progress of
Theoretical Physics. Supplement, 64, 346-367. http://dx.doi.org/10.1143/PTPS.
64.346, URL arXiv:http://oup.prod.sis.lan/ptps/article-pdf/doi/10.1143/PTPS.
64.346/5293041/64-346.pdf.

Kurth, T., Treichler, S., Romero, ], Mudigonda, M., Luehr, N., Phillips, E., et al.
(2018). Exascale deep learning for climate analytics. In SC18: international
conference for high performance computing, networking, storage and analysis
(pp. 649-660). IEEE.

Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using neural networks:
prediction and system modelling: Technical Report.

Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme event
forecasting with neural networks at Uber.

Larger, L., Baylén-Fuentes, A., Martinenghi, R, Udaltsov, V. S, Chembo, Y.
K., & Jacquot, M. (2017). High-speed photonic reservoir computing using
a time-delay-based architecture: Million words per second classification.
Physical Review X, 7, 011015. http://dx.doi.org/10.1103/PhysRevX.7.011015,
URL: https://link.aps.org/doi/10.1103/PhysRevX.7.011015.

Larger, L., Soriano, M. C.,, Brunner, D., Appeltant, L., Gutierrez, J. M., Pesquera, L.,
et al. (2012). Photonic information processing beyond turing: an optoelec-
tronic implementation of reservoir computing. Optics Express, 20, 3241-3249.
http://dx.doi.org/10.1364/0OE.20.003241, URL: http://www.opticsexpress.org/
abstract.cfm?URI=0e-20-3-3241.

Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16, 146-160. http://dx.doi.org/10.1007/BF01931367.

Lorenz, E. (1995). Predictability: a problem partly solved. In Seminar on pre-
dictability (pp. 1-18). Shinfield Park, Reading: ECMWF, URL: https://www.
ecmwf.int/node/10829.

Lu, Z., Hunt, B. R,, & Ott, E. (2018). Attractor reconstruction by machine learning.
Chaos. An Interdisciplinary Journal of Nonlinear Science, 28, 061104.

Luko3evicius, M. (2012). A practical guide to applying echo state networks. In
Neural networks: tricks of the trade.

LukoSevicius, M., & Jaeger, H. (2009). Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3, 127-149. http:
//dx.doi.org/10.1016/j.cosrev.2009.03.005.

Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(4950).

Maass, W., Natschldger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on per-
turbations. Neural Computation, 14, 2531-2560. http://dx.doi.org/10.1162/
089976602760407955.

Makarenko, A. V. (2018). Deep convolutional neural networks for chaos identifi-
cation in signal processing. In 2018 26th European signal processing conference
(pp. 1467-1471). IEEE.

Manneville, P. (1984). Macroscopic modelling of turbulent flows. In Proceedings
of a workshop held at Inria, Sophia-Antipolis, France, 1984. In Lecture notes in
physics: Vol. 230 (pp. 319-326).

Maus, A., & Sprott, ]. C. (2013). Evaluating lyapunov exponent spectra with neural
networks. Chaos, Solitons & Fractals, 51, 13-21. http://dx.doi.org/10.1016/j.
chaos.2013.03.001.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, ]., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature,
518(529).

Neofotistos, G., Mattheakis, M., Barmparis, G. D., Hizanidis, J., Tsironis, G.
P., & Kaxiras, E. (2019). Machine learning with observers predicts com-
plex spatiotemporal behavior. Frontiers in Physics, 7(24), http://dx.doi.org/
10.3389/fphy.2019.00024, URL: https://www.frontiersin.org/article/10.3389/
fphy.2019.00024.

Ott, E. (2002). Chaos in dynamical systems (2nd ed.). Cambridge University Press,
http://dx.doi.org/10.1017/CB09780511803260.

Parlitz, U., & Merkwirth, C. (2000). Prediction of spatiotemporal time series
based on reconstructed local states. Physical Review Letters, 84, 1890-1893.
http://dx.doi.org/10.1103/PhysRevLett.84.1890, URL: https://link.aps.org/doi/
10.1103/PhysRevLett.84.1890.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recur-
rent neural networks. In Proceedings of the 30th international conference on
international conference on machine learning: Vol. 28, (pp. 11I-1310-111-1318).
JMLR.org..

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
Automatic differentiation in pytorch.

Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction of
large spatiotemporally chaotic systems from data: A reservoir computing
approach. Physical Review Letters, 120, 024102. http://dx.doi.org/10.1103/
PhysRevLett.120.024102, URL: https://link.aps.org/doi/10.1103/PhysRevLett.
120.024102.

Pathak, J., Lu, Z, Hunt, B. R, Girvan, M., & Ott, E. (2017). Using machine
learning to replicate chaotic attractors and calculate Lyapunov exponents
from data. Chaos. An Interdisciplinary Journal of Nonlinear Science, 27, 121102.
http://dx.doi.org/10.1063/1.5010300.

Pathak, J., Wikner, A., Fussell, R, Chandra, S., Hunt, B. R, Girvan, M, et al.
(2018). Hybrid forecasting of chaotic processes: Using machine learning
in conjunction with a knowledge-based model. Chaos. An Interdisciplinary
Journal of Nonlinear Science, 28, 041101, URL: https://app.dimensions.ai/
details/publication/pub.1103541484andhttp://arxiv.org/pdf/1803.04779. ex-
ported from https://app.dimensions.ai on 2019/02/13.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323, 533-536. http://dx.doi.org/10.1038/
323533a0, URL: http://www.nature.com/articles/323533a0.

Sainath, T. N., Vinyals, O., Senior, A, & Sak, H. (2015). Convolutional, long
short-term memory, fully connected deep neural networks. In 2015 IEEE
international conference on acoustics, speech and signal processing (pp.
4580-4584). IEEE.

Sano, M., & Sawada, Y. (1985). Measurement of lyapunov spectrum from a
chaotic time series. Physical Review Letters, 55, 1082-1085. http://dx.doi.org/
10.1103/PhysRevLett.55.1082.

Sauer, T., Yorke, ]. A., & Casdagli, M. (1991). Embedology. Journal of Statistical
Physics, 65, 579-616. http://dx.doi.org/10.1007/BFO1053745.

Schifer, A. M., & Zimmermann, H. G. (2006). Recurrent neural networks are
universal approximators. In Proceedings of the 16th international conference
on artificial neural networks - volume part I (pp. 632-640). Berlin, Heidelberg:
Springer-Verlag, http://dx.doi.org/10.1007/11840817_66.

Schrittwieser, J., Antonoglou, L., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et
al. (2019). Mastering atari, go, chess and shogi by planning with a learned
model. arXiv preprint arXiv:1911.08265.

Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & chun Woo, W. (2015).
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In NIPS.

Siegelmann, H., & Sontag, E. (1995). On the computational power of neural nets.
Journal of Computer and System Sciences, 50, 132-150. http://dx.doi.org/10.
1006/jcss.1995.1013.

Silver, D., Huang, A., Maddison, C. J., Guez, A, Sifre, L., Van Den Driessche, G.,
et al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(484).



P.R. Vlachas, J. Pathak, B.R. Hunt et al. / Neural Networks 126 (2020) 191-217 217

Sivashinsky, G. I. (1977). Nonlinear analysis of hydrodynamic instability in
laminar flames — I. Derivation of basic equations. Acta Astronautica, 4,
1177-1206. http://dx.doi.org/10.1016/0094-5765(77)90096-0.

Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand,
& L. S. Young (Eds.), Dynamical systems and turbulence, Warwick 1980
(pp. 366-381). Berlin, Heidelberg: Springer Berlin Heidelberg.

Tikhonov, A. N,, & Arsenin, V. Y. (1977). In W. H. Winston (Ed.), Solutions of
ill-posed problems.

Vlachas, P. R, Byeon, W., Wan, Z. Y., Sapsis, T. P., & Koumoutsakos, P. (2018).
Data-driven forecasting of high-dimensional chaotic systems with long short-
term memory networks. Proceedings of The Royal Society of London. Series
A. Mathematical, Physical and Engineering Sciences, 474, 201708. http://dx.
doi.org/10.1098/rspa.2017.0844, URL: https://royalsocietypublishing.org/doi/
abs/10.1098/rspa.2017.0844, arXiv:https://royalsocietypublishing.org/doi/pdf/
10.1098/rspa.2017.0844.

Walker, D. W., & Dongarra, ]. J. (1996). MPI: a standard message passing
interface. Supercomputer, 12, 56-68.

Wan, Z. Y., & Sapsis, T. P. (2018). Machine learning the kinematics of spherical
particles in fluid flows. Journal of Fluid Mechanics, 857, http://dx.doi.org/10.
1017/jfm.2018.797.

Wan, Z. Y., Vlachas, P., Koumoutsakos, P., & Sapsis, T. (2018). Data-assisted
reduced-order modeling of extreme events in complex dynamical systems.
PLoS One, 13, 1-22. http://dx.doi.org/10.1371/journal.pone.0197704.

Werbos, P. ]J. (1988). Generalization of backpropagation with application
to a recurrent gas market model. Neural Networks, 1, 339-356. http:
//dx.doi.org/10.1016/0893-6080(88)90007-X, URL: http://www.sciencedirect.
com/science/article/pii/089360808890007X.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78, 1550-1560. http://dx.doi.org/10.1109/5.58337.

Weyn, J. A, Durran, D. R, & Caruana, R. (2019). Can machines learn to predict
weather? using deep learning to predict gridded 500-hpa geopotential height
from historical weather data. Journal of Advances in Modeling Earth Systems,
11, 2680-2693.

Wolf, A. B., Swift, J., Swinney, H. A., & Vastano, J. (1985). Determining Lyapunov
exponents from a time series. Physica D: Nonlinear Phenomena, 16, 285-317.
http://dx.doi.org/10.1016/0167-2789(85)90011-9.

Yan, X.,, & Su, X. G. (2009). Linear Regression Analysis. World Scientific, http:
//dx.doi.org/10.1142/6986, URL: https://www.worldscientific.com/doi/abs/10.
1142/6986, arXiv:https://www.worldscientific.com/doi/pdf/10.1142/6986.



