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ABSTRACT: Simulations are vital for understanding and predicting the
evolution of complex molecular systems. However, despite advances in
algorithms and special purpose hardware, accessing the time scales
necessary to capture the structural evolution of biomolecules remains a
daunting task. In this work, we present a novel framework to advance
simulation time scales by up to 3 orders of magnitude by learning the
effective dynamics (LED) of molecular systems. LED augments the
equation-free methodology by employing a probabilistic mapping between
coarse and fine scales using mixture density network (MDN) autoencoders
and evolves the non-Markovian latent dynamics using long short-term
memory MDNs. We demonstrate the effectiveness of LED in the Müller−Brown potential, the Trp cage protein, and the alanine
dipeptide. LED identifies explainable reduced-order representations, i.e., collective variables, and can generate, at any instant, all-
atom molecular trajectories consistent with the collective variables. We believe that the proposed framework provides a dramatic
increase to simulation capabilities and opens new horizons for the effective modeling of complex molecular systems.

1. INTRODUCTION

Over the last 30 years, molecular dynamics (MD) simulations
of biological macromolecules have advanced our under-
standing of their structure and function.1 Today MD
simulations have become an essential tool for scientific
discovery in the fields of biology, chemistry, and medicine.
However, they remain hampered by their limited access to
time scales of biological relevance for protein-folding pathways,
conformational dynamics, and rare-event kinetics.
In order to resolve this bottleneck, two complementary

approaches have been pursued. First efforts centered around
innovative hardware solutions started with crowd sourcing for
compute cycles2 and have more recently received a boost with
the Anton machine3 enabling remarkable, millisecond-long
simulations of biomolecules. Complementary algorithmic
efforts aim to advance time scales by systematic coarse
graining of the system dynamics. One of the first such studies
used the principal component or normal-mode analysis to
simulate the conformational changes in proteins.4−8 Several
coarse-graining (CG) methods reduce the complexity of
molecular systems by modeling several atoms as a single
particle.9−11 Backmapping techniques12−14 can be subse-
quently utilized to recover the atomistic degrees of freedom
from a CG representation. Multiscale approaches combine the
atomistic and coarse-grained/continuum models15−17 to aug-
ment the accessible time scales, while significant efforts have
focused on enhanced sampling techniques.18−24 Several of
these methods exploit the fact that coarse kinetic dynamics on
the molecular level are often governed by a few slow collective

variables (CVs) (also termed reaction coordinates)25−28 or by
transitions between a few long-lived metastable states.29,30

The CVs are typically specified a priori, and their choice
crucially impacts the performance and success of the respective
sampling methods. Similar to the CG models, the CVs provide
a low-order representation of the molecular system, albeit
without a particle representation. CVs are of much lower
dimensionality than CG models, and retrieving atomistic
configurations from CVs is a more challenging problem. While
many research efforts have addressed the fine to coarse
mapping in CG models, the literature is still scarce on methods
to retrieve atomistic configurations from CVs.
Machine-learning (ML) methods,31,32 exploiting the ex-

pressive power of deep networks and their scalability to large
data sets, have been used to alleviate the computational burden
associated with the simulation of proteins, leading to profound
scientific discoveries.33−35

The pioneering work in ref 36 utilized neural networks to
learn an approximate potential energy surface of density
functional theory (DFT) in bulk silicon from quantum
mechanical calculations, performing MD simulations with
this approximate potential and accelerating the DFT
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simulations. The field of data-driven learning of potential
energy surfaces and force fields is rapidly attracting attention
with important recent extensions and applications.37−45 ML is
employed to identify CG models for MD in refs 46−48.
Boltzmann generators are proposed in ref 49 to sample from
the equilibrium distribution of a molecular system directly
surpassing the need to perform MD.
Early ML methods for the identification of CVs utilized

manifold-learning techniques, i.e., diffusion maps,50−54 while
others were based on the variational approach55 leading to the
time-lagged independent analysis (TICA).56 TICA is based on
the Koopman operator theory, suggesting the existence of a
latent transformation to an infinite-dimensional space that
linearizes the dynamics on average. As a consequence, slow
CVs are modeled as linear combinations of feature functions of
the state of the protein (atom coordinates or internal structural
coordinates). Coarse graining of the molecular dynamics is
achieved by discretizing the state space and employing
indicator vector functions as features.55,57−59 Consequently,
the feature state dynamics reduce to the propagation law of a
Markov state model (MSM). MSMs have been extended to
“core set MSMs” in ref 29 employing Markovian milestoning60

on metastable core sets.
More recently the need for expert knowledge to construct

the latent feature functions has been alleviated by learning the
latent space using neural networks.61,62 The dynamics on the
latent space are assumed to be linear and Markovian. For
example, VAMPnets61,63 learn nonlinear features of the
molecular state with autoencoder (AE) networks. However,
they are not generative and cannot recover the detailed
configuration of the protein (decoding part). Moreover, the
method requires the construction of an MSM to sample the
latent dynamics and approximate the time scales of the
dynamics. Time-lagged AE networks have been utilized to

identify a reaction coordinate embedding and propagate the
dynamics in ref 62, but they are not generative, as the learned
mappings are deterministic, while the effective dynamics are
assumed to be Markovian.
Extensions to generative approaches include refs 64−66. In

ref 64 a deep generative MSM is utilized to capture the long-
time-scale dynamics and sample realistic alanine dipeptide
configurations. Even though mixture density networks
(MDNs) are employed in ref 66 to propagate the dynamics
in the latent space, memory effects are not taken into account.
The proposed method is based on the autocorrelation loss,
which suffers from the dependency on the batch size.65 In refs
59 and 67 the reweighted autoencoded variational Bayes for
enhanced sampling (RAVE) method is proposed that
alternates between iterations of MD and a variational AE
(VAE) model. RAVE is encoding each time step independently
without taking into account the temporal aspect of the latent
dynamics. RAVE requires the transition to the high-dimen-
sional configuration space to progress the simulation in time,
which can be computationally expensive. In recent work RAVE
has been expanded to incorporate a “variational mixture of
posteriors”68 prior in the VAE69 enhancing its performance.
The works mentioned above imply memoryless (Marko-

vian) latent space dynamics by selecting an appropriate time
lag in the master equations.57,58 The time lag is usually
estimated heuristically, balancing the requirements to be large
enough so that the Markovian assumption holds and at the
same time small enough to ensure that the method samples the
configuration space efficiently. We remark that in cases where a
protein is interacting with a solvent, only the configuration of
the protein is taken into account and not the solvent. This
renders the Markovian assumption in the latent dynamics
rather unrealistic. This issue is addressed in this work by
employing long short-term memory (LSTM)70 recurrent

Figure 1. High-dimensional (fine-scale) dynamics st are simulated for a short period (Tμ). During this warm-up period, the state st is passed
through the encoder network. The outputs of the encoder zt provide the time series input to the LSTM, allowing for the update of its hidden state
ht, thus capturing non-Markovian effects. The output of the LSTM is a parametrization of the probabilistic non-Markovian latent dynamics p(zt|ht).
Starting from the last latent state zt, the LSTM iteratively samples p(zt|ht) and propagates the low-order latent dynamics up to a total horizon of Tm
time units, with Tm > Tμ. The LED decoder may be utilized at any desired time scale to map the latent state zt back to a high-dimensional
representation st ∼ p(·|zt, zt−Δt, ...). Propagation in the low-order space unraveled by LED is orders of magnitude cheaper than evolving the high-
dimensional system based on first-principles (molecular dynamics/density functional theory, etc.).
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neural networks (RNNs) that capture memory effects of the
latent dynamics. An LSTM has been used in ref 71 in the form
of a language model to learn non-Markovian protein dynamics.
The model they propose, however, requires discretization of
the state space, is not generative, and does not identify a low-
order latent representation of the dynamics.
Here we propose a novel data-driven generative framework

that relies on learning the effective dynamics (LED) of
molecular systems.72 LED is founded on the equation-free
framework (EFF,)73 and it enriches it by employing ML
methodologies to evolve the latent space dynamics with the
mixture density network long short-term memory RNN
(MDN-LSTM) and the two-way mapping between coarse
and fine scales with mixture density network autoencoders
(MDN-AEs).74 These enrichments are essential in extending
the applicability of EFF to molecular systems with stochastic
non-Markovian dynamics. We demonstrate the effectiveness of
the LED framework in simulations of the Müller−Brown
potential (MBP), the Trp cage miniprotein, and the alanine
dipeptide in water. LED can accurately capture the statistics
and reproduce the free energy landscape from data. Moreover,
LED uncovers low-energy metastable states in the free energy
projected to the latent space and recovers the transition time
scales between them. We find that in simulations of the alanine
dipeptide and the Trp cage miniprotein, LED is 3 orders of
magnitude faster than the classical MD solver (not including
training or data acquisition cost). As a data-driven generative
method, LED has the ability to sample novel unseen
configurations interpolating the training data and accelerating
the exploration of the state space.

2. MATERIALS AND METHODS
The LED framework72 for molecular systems is founded on the
equation-free framework (EFF).73 It addresses the key
bottlenecks of EFF, namely, the coarse to fine mapping and
the evolution of the latent space using an MDN-AE and an
MDN-LSTM, respectively. An illustration of the LED
framework is given in Figure 1.
In the following, the state of a molecule at time t is described

by a high-dimensional vector ∈ Ω ⊆ st
ds, where ∈ ds

denotes its dimension. The state vector can include the atom
positions or their rotation/translation invariant features
obtained using for example the Kabsch transform.75 A
trajectory of this system is obtained by an MD integrator,
and the state of the molecule after a time step Δt is described
by the probability distribution function (PDF):

|+Δs sp( )t t t (1)

The transition distribution in eq 1 depends on the choice of
Δt.
2.1. Mixture Density Network Autoencoder. Here the

MDN-AE is utilized to identify the latent (coarse)
representation and upscale it probabilistically to the high-
dimensional state space. MDNs32 are neural architectures that
can represent arbitrary conditional distributions. The MDN
output is a parametrization of the distribution of a multivariate
random variable conditioned on the input of the network.
The latent state is computed by =z s w( ; )t t , where is

the encoder (a deep neural network) with trainable parameters
w and ∈ zt

dz with dz ≪ ds. Since zt is a coarse
approximation, many states can be mapped to the same zt.
As a consequence, a deterministic mapping zt → st like the one

used in refs 61 and 62 does not provide the full distribution
p(st |zt). Here, an MDN is employed to model the upscaling
conditional PDF p(st |zt) described by the parameters ws|z.
These parameters are the outputs of the decoder with weights
w and are a function of the latent representation zt, i.e.

=|w z z w( ) ( ; )s z t t (2)

The state of the molecule can then be sampled from p(st |zt)
≔p(st ; ws |z).
Arguably, including the rotation/translation invariant

features of the molecule under study in the state st encourages
the MDN to sample physically meaningful molecular
configurations. The state st is composed of states representing

bond lengths st
b ∈ Rds

b

and angles st
a ∈ Rds

a

. Initially, the MD
data of the bonds are scaled to [0, 1]. An auxiliary variable

vector vt ∈ Rds
b

is defined to model the distribution of bonds. In
particular, p(vt |zt) is modeled as a Gaussian mixture model
with Ks mixture kernels as

∑ μ σπ| =
=

v z z z zp( ) ( ) ( ( ), ( ))v v vt t
k

K
k

t
k

t
k

t
1

s

(3)

and the mapping st
b = ln(1 + exp(vt)) is used to recover the

distribution of the scaled bond lengths at the output. The
functional form of the mixing coefficients πv

k(zt), the means
μv
k(zt), and the variances σv

k(zt) is a deep neural network
(decoder ). The distribution of the dihedral angles is
modeled with the circular normal (von Mises) distribution, i.e.

∑ ν μ
ν

π
π

| =
−

=

s z z
z s z

z
p

I
( ) ( )

exp( ( )cos( ( )))

2 ( ( ))s
s s

s
t
a

t
k

K
k

t

k
t t

a k
t

k
t1 0

s

a

a a

a (4)

where I0(νsa
k ) is the modified Bessel function of order 0. Here,

again the functional form of πsa
k (zt), μsa

k (zt), and νsa
k (zt) is a deep

neural network (decoder ).
In total, the outputs of the decoder that parametrize p(st|

zt) are

μ σ μ νπ π= { }| ∈{ }w , , , , ,s z v v v s s s
k k k k k k

k K1,..., s
a a a (5)

which are all functions of the latent state zt, which is the
decoder input. The MDN-AE is trained to predict the mixing
coefficients maximizing the data likelihood

= |

= |

w w s z

s w

p

p

, argmax ( )

argmax ( ; )

w w

w w
s z

t t

t

,

, (6)

where =|w s w w( ( ; ); )s z t is the output of the MDN-AE
and st are the MD data. The details of the training procedure
can be found in ref 76.

2.2. Long Short-Term Memory Recurrent Neural
Network. The latent dynamics may be characterized by
non-Markovian effects, i.e.

|+Δ −Δz z zp( , , ...)t t t t t

due to the neglected degrees of freedom (solvent) or the
selection of a relatively small time lag Δt.
Here the LSTM cell architecture70 is utilized to evolve the

nonlinear and non-Markovian latent dynamics. The prop-
agation in the LSTM is given by
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= −Δ −Δh c z h c w, ( , , ; )t t t t t t t (7)

where the hidden-to-hidden recurrent mapping takes the
form

σ

σ

σ

= [ ] +

= [ ] +

̃ = [ ] +

= ⊙ + ⊙ ̃

= [ ] +

= ⊙

−Δ

−Δ

−Δ

−Δ

−Δ

g h z b

g h z b

c h z b

c g c g c

g h z b

h g c

W

W

W

W

( , )

( , )

tanh( , )

( , )

tanh( )

z

z

t
f

f f t t t f

t
i

i i t t t i

t c t t t c

t t
f

t t t
i

t

t h h t t t h

t t t (8)

where ∈ g g g, , z
t
f

t
i

t
dh are the gate vector signals (forget,

input, and output gates), ∈ zt
dz is the latent input at time t,

∈ ht
dh is the hidden state, ∈ ct

dh is the cell state, while Wf,

Wi , Wc , Wh ∈ × +d d d( )h h z are weight matrices and
∈ b b b b, , ,f i c h

dh biases. The symbol ⊙ denotes the
elementwise product. The activation functions σf, σi, and σh
are sigmoids. The dimension of the hidden state dh (number of
hidden units) controls the capacity of the cell to encode
history information. The set of trainable parameters of the
LSTM are

= { }w b b b b W W W W, , , , , , ,f i c h f i c h (9)

An illustration of the information flow in an LSTM cell is given
in Figure 2. The cell state can encode the history of the latent
state evolution and capture non-Markovian effects.

2.3. Mixture Density LSTM Network. The LSTM
captures the history of the latent state, and the non-Markovian
latent transition dynamics are expressed as

| = |+Δ −Δ +Δz z z z hp p( , , ...) ( )t t t t t t t t (10)

where are ht given in eq 7. A second MDN is used to model
the conditional distribution p(zt+Δt|ht) of the latent transition
dynamics. This MDN is conditioned on the hidden state of the
LSTM ht and implicitly conditioned on the history, i.e., p(zt+Δt
|zt, zt−Δt, ...) ≔ p (zt+Δt; wz|h), so it can capture non-Markovian
dynamics. The distribution p(zt+Δt|ht) is modeled as a Gaussian
mixture with Kz mixture kernels

∑ μ σπ| =+Δ
=

z h h h hp( ) ( ) ( ( ), ( ))z z zt t t
k

K
k

t
k

t
k

t
1

z

(11)

with parameters wz|h given by

μ σπ= { }|w h h h h( ) ( ), ( ), ( )z h z z zt
k

t
k

t
k

t (12)

that are a function of ht. These parameters are the outputs of
the neural network h w( ; )t , with trainable weights w , and
are a function of the hidden state, i.e.

| ≔

=
+Δ +Δ |

|

z h z w

w h h w

p p( ) ( ; )

( ) ( ; )

z h

z h

t t t t t

t t (13)

The weights of the LSTM w and the latent MDN w are
trained to output the parameters wz|h that maximize the
likelihood of the latent evolution

= +Δ |w w z wp, argmax ( ; )
w w

z ht t
, (14)

where wz|h is defined in eq 13, and ht appearing in eq 13 is
defined in eq 7. During the training phase, the MD trajectory
data st are provided at the input of the trained MDN-AE

=z s w( ; )t t . The encoder outputs the latent dynamics zt
that are used to update the hidden state of the LSTM and
optimize its weights according to eq 14. In contrast to the
linear operator utilized in MSMs, the recurrent functional form
in eq 7 can be nonlinear and incorporate memory effects via
the hidden state of the LSTM.

2.4. Learning Effective Dynamics. The LED framework
can be employed to accelerate MD simulations and enable
more efficient exploration of the state space and uncovering of
novel protein configurations. The networks in LED are trained
on trajectories from MD simulations in two phases. First, the
MDN-AE provides a reduced-order representation, maximizing
the data likelihood (ref 72). The MDN-AE is trained with
backpropagation77 using the adaptive stochastic optimization
method Adam.78 Adding a pretraining phase fitting the kernels
μk, σk of the MDN-AE to the data and fixing them during
MDN-AE training led to better results. Next, the MDN-LSTM
is trained to forecast the latent space dynamics (the MDN-AE
weights are considered fixed) to maximize the latent data
likelihood. MDN-LSTM is trained with backpropagation
through time (BPTT)79 with the Adam optimizer.
The LED propagates the computationally inexpensive

dynamics on its latent space. Starting from an initial state
from a test data set (unseen during training), a short time
history Tμ of the state evolution is utilized to warm up the
hidden state of the LED. The MDN-LSTM is used to
propagate the latent dynamics for a time horizon Tm ≫ Tμ.
High-dimensional state configurations can be recovered at any
time instant by using the probabilistic decoder part of MDN-
AE. We find that the LED framework can accelerate MD
simulations by 3 orders of magnitude.

3. RESULTS
The LED framework is tested in three systems, single-particle
Langevin dynamics using the two-dimensional MBP, the Trp
cage miniprotein, and the alanine dipeptide, widely adopted as
benchmarks for molecular dynamics modeling.55,61,62,66,80

3.1. Müller−Brown Potential (MBP). The Langevin
dynamics of a particle in the MBP are characterized by the
stochastic differential equation

Figure 2. Information flow in an LSTM cell.
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γ̈ = −∇ − ̇ +x x xm t V t t k T R t( ) ( ( )) ( ) 2 ( )B (15)

where ∈ x 2 is the position, ẋ is the velocity, ẍ is the
acceleration, V(x) is the MBP (defined in the Supporting
Information), kB is Boltzmann’s constant, T is the temperature,
γ is the damping coefficient, and R(t) a delta-correlated
stationary Gaussian process with zero-mean. The nature of the
dynamics is affected by the damping coefficient γ. Low
damping coefficients lead to an inertial regime. High damping
factors lead to a diffusive regime (Brownian motion) with less
prominent memory effects. Here, a damping γ = 1 is
considered, along with kBT = 15.
The equations are integrated with the velocity Verlet

algorithm with time step δt = 10−2, starting from 96 initial
conditions randomly sampled uniformly from x ∈ [−1.5, 1.2]
× [−0.2, 2] until T = 104, after truncating an initial transient
period of T̃ = 103. The data are subsampled keeping every 50th
data point to create the training and testing data sets for LED.
The coarse time step of LED is Δt = 0.5. We use 32 initial
conditions for training, 32 for validation, and all 96 for testing.
LED is trained with a one-dimensional reduced order latent
representation ∈ zt . The reader is referred to the
Supporting Information for further information regarding the
MBP parametrization of ref 80 and hyperparameters of LED.
The MBP is shown in Figure 3, along with a density scatter

plot of the joint distribution of the MBP states computed from
the testing data and LED. The potential has three minima. The
potential value around the middle one, however, is more than 1
order of magnitude higher than the other two and lies very
close to the one on the right (Figure 3, left and middle). The
joint distribution reveals two dominant long-lived metastable
states that correspond to the two dominant low-energy regions.
The local minimum in the middle is not clearly distinguishable.
The LED learns to transition probabilistically between the

metastable states, mimicking the dynamics of the system and
reproducing the state statistics. We note, however, that the
LED cannot distinguish the region of the local minimum in the
middle as a separate metastable state (Figure 3, right). A
”weak” metastable state region (local minimum but high
potential compared to other nearby minima) that lies close to a
dominant one of much lower potential value can be missed (or
be absorbed to the nearby regions).
The free energy projected on the latent space, i.e., F =

−κBT log p(zt), is plotted in Figure 4. The free energy profile of
the trajectories sampled from LED matches closely the one
from the reference data with a root-mean-square error between
the two free energy profiles of ≈0.74 κBT. LED reveals two
minima in the free energy profile. As noted before, the third
local minimum of the BMP is absorbed by the dominant one
close to it. Even though LED cannot distinguish the third local
minimum, the projected free energy profile is reproduced.
Utilizing the LED decoder, the latent states in these regions are
mapped to their image in the two-dimensional state
representation ∈ st

2 (here corresponding to ∈ xt
2) in

Figure 4. LED is mapping the low-energetic regions in the free
energy profile to the long-lived metastable states in the two-
dimensional space of the MBP.
Next, we evaluate the LED framework in reproducing the

transition times between the long-lived states. In LED,
metastable states can be defined on either the reduced order
latent space ∈ zt or the state space ∈ st

2 (as the decoder
can map any latent state to a state space). In the following, two
metastable states are defined as ellipses on the state space
(Table S1) and depicted in Figure 3. The time scales will vary
depending on the definition of the metastable states in the
phase space. The distribution of transition times computed
from LED trajectories is compared with the transition time

Figure 3. From left to right: the Müller−Brown potential, a scatter plot of the joint state distribution computed from reference data (with
annotation of two long-lived metastable states), and the same scatter plot obtained by LED sampled trajectories.

Figure 4. Middle: Free energy profile projected on the latent space learned by the LED encoder, i.e., F = −κBT ln p(zt). The free energy profile
computed by LED (propagation of the latent dynamics with LED) matches closely the one from the reference data. Quantitatively, the root-mean-
square error is 0.74 κBT. LED recovers two low-energy regions that are mapped to the two long-lived metastable states (left and right) in the two-
dimensional state space ∈ st

2.
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distribution from the test data in Figure 5. LED captures
quantitatively the transition time distributions, and the mean
values are close to each other. In the Supporting Information,
we also report the transition times obtained with metastable
states definition on the latent space. This approach has the
benefit of not requiring the prior knowledge about the
metastable states in the state space. In conclusion, LED is
capturing the joint state distribution on the MBP and matching
the time scales of the system.
3.2. Trp Cage. The Trp cage is considered a prototypical

miniprotein for the study of protein folding.66 The protein is
simulated with MD81 with a time step δt = 1 fs, up to a total
time of T = 100 ns. The data are subsampled at Δt = 0.1 ps,
creating a trajectory with N = 106 samples. The data are
divided into 248 sequences of 4000 samples (T = 400 ps each).
The first 96 sequences are used for training (corresponding to
38.4 ns) and the next 96 sequences for validation, while all data
is used for testing.
The protein positions are transformed into rototranslational

invariant features (internal coordinates), composed of bonds,
angles, and dihedral angles, leading to a state with dimension ds
= 456. LED is trained with a latent space ∈ zt

2, i.e., dz = 2.
LED is tested by starting from the initial condition in each of
the 248 test sequences, iteratively propagating the latent space

to forecast T = 400 ps. For more information on the
hyperparameters of LED, refer to the Supporting Information.
The projection of MD trajectory data to LED latent space is

illustrated in Figure 6, left, in the form of the free energy, i.e., F
= −κBT log p(zt), with = ∈ z z z( , )t

T
1 2

2. The free energy
on the latent space computed from trajectories sampled from
LED is given in Figure 6 on the right. LED successfully
captures the three metastable states of the Trp cage
miniprotein, while being 3 orders of magnitude faster
compared to the MD solver. Quantitatively, the two profiles
agree up to an error margin of approximately 22.5 κBT. The
Supporting Information provides additional results on the
agreement of the marginal state distributions (Figure S2) and
realistic samples of the protein configuration sampled from
LED (Figure S3).

3.3. Alanine Dipeptide. The alanine dipeptide is often
used as the testing ground for enhanced sampling methods.82

LED is evaluated in learning and propagating the dynamics of
alanine dipeptide in water. The molecule is simulated with
MD,81 and the same data acquisition procedure with the Trp
cage in Section 3.2 is used (δt = 1 fs, N = 106, Δt = 0.1 ps, 96
trajectories for training, 96 for validation). LED is tested by
starting from the initial condition in each of the total 248 test
trajectories, iteratively propagating the latent dynamics to

Figure 5. Distribution of the transition times learned by LED (blue), computed from sampled trajectories, matching the original fine-scale
transition times of the MBP dynamics (green). Left: Histogram of T0→1. Mean T0→1 of MD trajectories is 61; mean T0→1 = 91 for LED. Right:
Histogram of T1→0. Mean T1→0 of MD trajectories is 188; mean T1→0 = 164 for LED. LED has learned to propagate the effective dynamics (a one-
dimensional latent state z) and capture the non-Markovian effects.

Figure 6. Free energy projection on the latent space F = −κBT log p(zt), with ∈ zt
2. Left: MD data projected to the LED latent space. Right:

Free energy of trajectories sampled from LED. LED is capturing the free energy profile.
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forecast T = 400 ps. This testing is repeated 5 times with a
different random seed, producing data equivalent to T = 496 ns
in total.
The dipeptide positions are transformed into rototransla-

tional invariant features (internal coordinates), composed of
bonds, angles, and dihedral angles, leading to a state with
dimension ds = 24. In order to demonstrate that LED can
uncover the dynamics in a drastically reduced order latent
space, the dimension of the latter is set to 1 (dz = 1), i.e.,

∈ zt . For more information on the hyperparameters of LED,
refer to the Supporting Information.

The metastable states of the dynamics are represented in
terms of the energetically favored regions in the state space of
two backbone dihedral angles, ϕ and ψ, i.e., the Ramachandran
space83 plotted in Figure 7. Specifically, previous works
consider five low-energy clusters, i.e., {C5, PII, αR, αL, C7

ax}.
The trained LED is qualitatively reproducing the density in the
Ramachandran plot in Figure 7, identifying the three dominant
low-energy metastable states {C5, PII, αR}. LED, however, fails
to capture the state density on the less frequently observed
states in the training data {αL, C7

ax}. The marginal distributions
of the trajectories generated by LED match the ground-truth
ones (MD data) closely, as depicted in Figure S4.

Figure 7. Ramachandran plot of the alanine dipeptide, i.e., space spanned by two backbone dihedral angles (ϕ, ψ). Scatter plots are colored based
on the joint density of (ϕ, ψ). Left: Test data. Right: LED trajectories. We observe five energetically favorable metastable states denoted with {C5,
PII, αR, αL, C7

ax}. LED captures the three dominant metastable states {C5, PII, αR,}. The states {αL, C7
ax} are rarely observed in the training data.

Figure 8. Plot of the free energy profile projected on the latent state learned by the LED, i.e., F = −κBT ln p(zt). The latent free energy profile of
MD trajectories is compared with the latent free energy profile of trajectories sampled from LED. The two profiles agree up to a root-mean-square
error of 0.25 κBT. Utilizing the LED decoder, the low-energy regions in the latent space (close to the minima) can be mapped to the corresponding
protein configurations and metastable states in the Ramachandran plot. The LED uncovers the three dominant metastable states {C5, PII, αR} in the
free energy surface (minima). The LED captures the free energy profile and the dominant metastable states while being computationally 3 orders of
magnitude cheaper than MD.
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Even though LED is propagating a one-dimensional latent
state, once trained, it can reproduce the statistics while being 3
orders of magnitude faster than the MD solver.
The free energy is projected to the latent space, i.e., F =

−κBT ln(p(zt)), and plotted in Figure 8. The free energy
projection computed from MD trajectories (train and test
data) is compared with the one computed from trajectories
sampled from LED. We estimate the mean free energy profile
and the associated standard error of the mean (SEM) using 96
splits of the data. The free energy profile of LED agrees with
the reference (test data) up to a root-mean-square error of 0.25
κBT. The profile estimated from the train data exhibits a
slightly higher error of 1.22 κBT and higher SEM. Note that
LED unravels three dominant minima in the latent space.
These low-energy regions correspond to metastable states of
the dynamics.
The Ramachandran space (ϕ, ψ) is frequently used to

describe the long-term behavior and metastable states of the
system.62,84 The latent encoding of the LED is evaluated based
on the mapping between the latent space and the
Ramachandran space. Utilizing the MDN decoder, the LED
can map the latent state z to the respective rototranslational
invariant features (bonds and angles) and regions in the
Ramachandran plot. As illustrated in Figure 8, the LED is
mapping the three low-energy regions in the latent space to the
three dominant metastable states in the Ramachandran plot
{C5, PII, αR}.
Next, we evaluate LED’s effectiveness in unraveling novel

configurations of the protein (state-space) absent from the
training data. For this purpose, we create four different small
data sets composed of trajectories of the protein, each one not
including one of the metastable states {C5, PII, αR, C7

ax}. This is
done by removing any state that lies closer than 40° to the
metastable states’ centers. In this way, we guarantee that LED
has not seen any state close to the metastable state missing
from the data. Note that in this case, the LED is not trained on
a single large MD trajectory but on small trajectories that are
not temporally adjacent. We end up with four data sets, each
one consisting of approximately 800 trajectories of length T =

50 ps (500 steps of 0.1 ps). Each data set covers approximately
40 ns protein simulation time. These data sets are created to
evaluate the effectiveness of LED in generating truly novel
configurations for faster exploration of the state space. We do
not care at this point for accurate reproduction of the statistics
due to the minimal data used for training. In Figure 9, we plot
the Ramachandran plots of the training data along with the
ones obtained by analyzing the trajectories of the trained LED
models in each of the four cases. We observe that the LED can
unravel the metastable states PII, C5, C7

ax, and αR, even though
they were not part of the training data. However, by removing
states that lie close to the metastable state αR, the LED cannot
capture the αR and C7

ax metastable states. This is because the
LED is trained on only a small subset of the training data set,
and the transitions to these metastable states are rare.
The dynamics learned by LED are evaluated according to

the mean first-passage times (MFPTs) between the dominant
metastable states. The MFPT is the average time scale to reach
a final metastable state, starting from any initial state. The
MFPTs are computed a posteriori from trajectories sampled
from the LED and the MD test trajectories, using the
PyEMMA software.85 The metastable states considered here
are given in the Supporting Information.
As a reference for the MFPTs, we consider an MSM fitted to

the MD data (test data set). The reference MFPTs agree with
previous literature.84,86−88 The time lag of the MSM is set to
ΔtMSM = 10 ps to ensure the necessary Markovianity of the
dynamics. This time lag is 2 orders of magnitude larger than
the time step of LED. Fitting an MSM with a time lag of ΔtMSM
= 1 ps on the MD data results in very high errors (≈85% on
average) in the computation of MFPTs. This emphasizes the
need for non-Markovian models that can reproduce the
system’s dynamics and statistics independent of the selection
of the time lag.
The MFPTs of trajectories sampled from LED are estimated

with an MSM with a time lag ΔtMSM = 10 ps. We consider
1232 trajectories sampled from LED, split them into 32
groups, and report the mean MFPT and the associated
standard error of the mean (SEM). Note that the LED is

Figure 9. LED is trained in four scenarios hiding data that lie closer than 40° to one of the metastable states {PII, C5, αR, C7
ax} each time. LED can

successfully generate novel probable configurations close to the metastable states {PII, C5, αR, C7
ax}. Due to the limited training data, however,

capturing the state density in the Ramachandran plot is challenging.
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operating on a time step Δt = 0.1 ps. The MFPTs are
identified with a low average relative error of 8.41%. The
results on the MFPTs are summarized in Table 1. LED
captures very well the transitions that are dominant in the data,
e.g., TPII → C5

or TαR → C5
. In contrast, LED exhibits higher

MFPT errors in transitions that are less dominant in the
training data.
LED identifies the dominant MFPTs successfully by utilizing

a very small amount of training data (38.4 ns for training and
38.4 ns validation) and propagating the latent dynamics on a
reduced order space (dz = 1). LED trajectories are 3 orders of
magnitude cheaper to obtain compared to MD data. As
multiple trajectories (here 1232) can be sampled from LED at
a fraction of the computational cost of MD, the SEM in the
estimation of the MFPTs is small.
At the same time, MSM fitting is a relatively fast procedure

once the clustering based on the metastable states is obtained.
In contrast, a careless selection of the time lag in the MSM that
fails to render the dynamics Markovian, (e.g., Δt = 1 ps) leads
to a surrogate model that fails to capture the system time
scales. This emphasizes the need to model non-Markovian
effects with LED in the case of limited data sampled at a high
frequency (small time steps Δt). A more informative selection
of the time lag may alleviate this problem, rendering the
dynamics Markovian as in the reference MSM. Still, the
consequent subsampling of the data can lead to omissions of
effects whose time scales are smaller than the time lag. As a
consequence, the heuristic selection of the time lag is rendering
the modeling process error-prone. Table S12 provides
additional results on the MFPTs estimated based on the
metastable state definition in the latent space of LED (without
prior knowledge).
If the metastable states are known a priori or a latent state is

available (e.g., from a trained autoencoder or an other method
to unravel collective variables), the MFPTs are represented in,
and can be computed directly from, the training data (Table 1,
eight splits of the trajectories from the train data set
considered). The SEM, however, is large due to the limited
amount of data. We note that LED is not expected to
reproduce accurately transitions that are not present in the
training data.
LED utilizes 76 ns of MD data for training, generated with

the MD solver in approximately 10 days. The total training
time of LED is approximately 20 h. The trained model can
generate 12 μs of MD data per day, while with MD we can
generate approximately 7.8 ns per day. In order to acquire the
T = 496 ns total data used in this case for statistics with MD,

we would need approximately 64 days. By training the LED
(20 h) on data acquired from MD (10 days) and then
sampling multiple trajectories (4 h) in parallel, we can acquire
the same amount of data in 11 days. A realistic speed-up
estimation, taking into account data acquisition and training, is
thus 3. For a larger protein, this speed-up is expected to be
higher.

4. DISCUSSION

This work presents a data-driven framework (LED) to learn
and propagate the effective dynamics of molecular systems
resulting in dramatically accelerated MD simulations. The LED
maximizes the data likelihood for a continuous reduced-order
latent representation. The nonlinear dynamics are propagated
in the latent space, and the memory effects are captured
through the hidden state of the LSTM. Moreover, the method
is generative, and the decoder part of the MDN-AE can be
employed to sample high-dimensional configurations on any
desired time scales. This is in contrast to previous state-of-the-
art methods based on the Markovian assumption on the latent
state or on the minimization of the autocorrelation or the
variational loss in the data. The latter take into account the
error in the long-term equilibrium statistics explicitly to
capture the system time scales but suffer from a dependency
on the batch size.65

The encoder of LED is analogous to the coarse-graining
model design, while the decoder is implicitly learning a
backmapping to atomistic configurations. The LED automates
the dimensionality reduction often associated with the
empirical a priori selection of collective variables in molecular
simulations.23,62 At the same time the MDN-LSTM propagates
the dynamics on the latent space in a form that is comparable
to nonlinear, non-Markovian metadynamics.82

The effectiveness of LED is demonstrated in simulations of
three systems. In Langevin dynamics using BMP, LED recovers
the free energy landscape in the latent space, identifies two
low-energetic states corresponding to the long-lived metastable
states of the potential, and captures the transition times
between the metastable states. In the Trp cage miniprotein,
LED captures the free energy projection on the latent space
and unravels three metastable states. Finally, for the system of
alanine dipeptide in water, LED captures the configuration
statistics of the system accurately while being 3 orders of
magnitude faster than MD solvers. Moreover, it identifies three
low-energetic regions in the free energy profile projected to the
one-dimensional latent state that corresponds to the three
dominant metastable states {αR, C5, PII}. LED also captures the

Table 1. Mean First-Passage Times (MFPTs) between the Metastable States of Alanine Dipeptide in Water (in ns)a

MSM−10 ps on MD data MSM−1 ps on MD data MSM−10 ps on MD train data MSM−10 ps on LED−0.1 ps data

MFPT (ns) reference MFPT error (%) MFPT ± SEM error (%) MFPT ± SEM error (%)

TC5→PII 0.112 0.017 84 0.123 ± 0.013 9 0.094 ± 0.002 16

TC5→αR
0.096 0.014 86 0.107 ± 0.012 11 0.093 ± 0.003 4

TPII→C5
0.238 0.038 84 0.242 ± 0.021 2 0.218 ± 0.005 8

TPII→αR
0.098 0.014 86 0.109 ± 0.012 11 0.093 ± 0.003 5

TαR→C5
0.247 0.038 85 0.251 ± 0.021 1 0.232 ± 0.005 6

TαR→PII 0.124 0.018 86 0.134 ± 0.014 8 0.110 ± 0.002 11

average relative error 85.01% 6.99% 8.41%
aMFPTs are estimated by fitting MSMs with different time lags (10 and 1 ps) on trajectories generated by MD or the LED framework. The average
relative error is given for reference.
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dominant mean first-passage times in contrast to the MSM
operating on the same time scale, owing to the non-Markovian
latent propagation in the latent state with the MDN-LSTM.
Furthermore, we showcase how our framework is capable of
unraveling novel protein configurations interpolating on the
training data.
We note that the speed-up achieved by LED depends on the

MD solver used, the dimensionality, and the complexity of the
protein under study. While extrapolating estimates to systems
not yet tested requires caution, our evidence suggests that the
computationally efficient propagation in the latent space of the
LED will always provide dramatic accelerations over molecular
simulations. Further acceleration can be accomplished by
coupling LED and MD solver in different parts of the domain
for faster exploration of the state space.
We believe that LED paves the way for faster exploration of

the conformational space of molecular systems. Future
research efforts will target the application of LED to larger
proteins and its capabilities in uncovering the metastable states
in the free energy profile.
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