
diss . eth no. 28277

L E A R N I N G A N D F O R E C A S T I N G T H E
E F F E C T I V E D Y N A M I C S O F C O M P L E X S Y S T E M S

A C R O S S S C A L E S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

pantelis rafail vlachas

M.Sc., Electrical Engineering & Information Technology,
Technical University of Munich

born on October 28th 1993

citizen of Greece

accepted on the recommendation of

Prof. Dr. P. Koumoutsakos, examiner
Prof. Dr. Themistoklis Sapsis, co-examiner

Prof. Dr. Matej Praprotnik, co-examiner

2022

Pantelis Rafail Vlachas: Learning and Forecasting the Effective Dynamics of
Complex Systems across Scales, © 2022

doi: 10.3929/ethz-b-000551130

To my (extended) family.

A B S T R A C T

Simulations of complex systems are essential for applications ranging from
weather forecasting to molecular systems and drug design. The veracity
of the resulting predictions hinges on their capacity to capture the un-
derlying system dynamics. Massively parallel simulations performed in
High-Performance Computing (HPC) clusters capture these dynamics by
resolving all spatio-temporal scales. The computational cost is often pro-
hibitive for experimentation or optimization, while their findings might not
allow for generalization. The design of dimensionality reduction methods
and fast data-driven reduced-order models or surrogates have been matters
of life-long research efforts.

In the first part of this thesis, we focus on the design and training of
data-driven recurrent neural networks for forecasting the spatio-temporal
dynamics of high-dimensional and reduced-order complex systems. We
propose architectural advances and training algorithms that alleviate the
pitfalls of previously proposed methods, whose application was limited
to lower-order systems. The designed algorithms extend the arsenal of
predictive models for complex systems and spatio-temporal chaos.

In the second part, we present a novel systematic framework that bridges
large-scale simulations and reduced-order models to Learn the Effective
Dynamics (LED) of complex systems. The framework forms algorithmic
alloys between non-linear machine learning algorithms and the Equation-
Free approach for modeling complex systems exhibiting spatio-temporal
chaos. LED deploys autoencoders to map between fine- and coarse-grained
representations and evolves the latent space dynamics using recurrent
neural networks. The algorithm is validated on benchmark problems, and
we find that it outperforms state-of-the-art reduced-order models in terms of
predictability and large-scale simulations in terms of cost. LED is applicable
to systems ranging from chemistry to fluid mechanics and reduces the
computational effort by up to two orders of magnitude while maintaining
the prediction accuracy of the full system dynamics. We argue that LED
constitutes a potent novel modality for the accurate prediction of complex
systems.

v

Z U S A M M E N FA S S U N G

Die Simulation von komplexen Systeme sind für Anwendungen bei Wet-
terprognosen bis hin zu Entwicklung von Medikamenten unerlässlich. Die
Richtigkeit der resultierenden Vorhersagen hängt von der Fähigkeit ab, die
zugrunde liegende Systemdynamik vollständig zu erfassen. Massiv par-
allele Simulationen, die in High-Performance Computing (HPC)-Clustern
durchgeführt werden, erfassen diese Dynamik, indem sie alle räumlichen
und zeitlichen Skalen auflösen. Die Rechenkosten sind oft zu hoch um
Experimente oder Optimierungen durchzuführen und die Ergebnisse die-
ser Simulationen lassen sich möglicherweise nicht verallgemeinern. Aus
diesem Grund ist die Entwicklung von Methoden zur Dimensionalitätsre-
duktion und schneller, datengesteuerten Modellen der Gegenstand diverser
Forschungsbemühungen.

Im ersten Teil dieser Arbeit konzentrieren wir uns auf den Entwurf und
das Training rekurrenter neuronaler Netze zur Vorhersage der räumlich-
zeitlichen Dynamik hochdimensionaler komplexer Systeme in reduzierter
Ordnung. Wir schlagen architektonische Fortschritte und Trainingsalgo-
rithmen vor, die die Probleme früherer Methoden, deren Anwendung auf
Systeme niedrigerer Ordnung beschränkt war, beheben. Die entwickelten
Algorithmen erweitern das Arsenal an Modellen für die Vorhersage von
komplexen Systeme und räumlich-zeitlichem Chaos.

Im zweiten Teil stellen wir einen neuen Rahmen vor um massiv parallele
Simulationen und Modelle in reduzierter Ordnung miteinander zu verbin-
den, um die effektive Dynamik verschiedener komplexer Systeme zu erler-
nen (LED). Der Rahmen bildet eine algorithmische Verknüpfung von nicht-
linearen Algorithmen des maschinellen Lernens und dem gleichungsfreien
Ansatz zur Modellierung komplexer Systeme, die ein räumlich-zeitliches
Chaos aufweisen. LED setzt Autoencoder ein, um eine Abbildung zwischen
fein- und grobkörnigen Repräsentationen zu finden, und entwickelt die so
gefundene latente Raumdynamik mithilfe rekurrenter neuronaler Netze.
Der Algorithmus wird anhand bekannter Problemen validiert, und wir stel-
len fest, dass er die existierenden Techniken in Bezug auf die Qualität der
Vorhersagen und bei massiv parallele Simulationen in Bezug auf die Kosten
übertrifft. LED ist auf Systeme aus der Chemie bis hin zu Systemen aus der
Strömungsmechanik anwendbar und reduziert den Rechenaufwand um

vii

bis zu zwei Größenordnungen, wobei die Vorhersagegenauigkeit erhalten
bleibt. Wir legen dar, dass LED eine neuartige, wirksame Methode für die
genaue Vorhersage komplexer Systeme darstellt.

viii

A C K N O W L E D G E M E N T S

First and foremost, I am grateful to my advisor, Prof. Petros Koumoutsakos.
He gave me the chance to be part of a dynamic research environment, the
CSElab, provided important research ideas and valuable advice, and helped
me identify and filter the signal from the noise in the academic environment.
His scientific guidance helped me grow scientifically and personally.

I would like to thank Prof. Themis Sapsis, Prof. Edward Ott, Dr. Zhong Yi
Wan, Dr. Jaideep Pathak, and Dr. Wonmin Byeon for our fruitful collabora-
tions. Special thanks go to Prof. Julija Zavadlav and Prof. Matej Praprotnik,
who provided scientific advice and guidance and ensured an enjoyable
collaboration.

I am also thankful to Ivica Kicic, Pascal Weber, Guido Novati, Fabian
Wermelinger, Susanne Lewis, and all other members of the CSElab for their
support throughout this journey. I will remember some of our exciting
discussions about technical and -especially- non-technical topics.

Last but not least, I am incredibly thankful to my family and friends,
too many to name here, in Athens, in Ioannina, and Zurich, especially to
Aris, Kostas, and Sotiris. All of them constitute a vital supportive social
structure, without which any professional or scientific step of mine would
be of greater difficulty.

ix

C O N T E N T S

1 Introduction 1
1.1 Multiscale Systems . 1

1.2 Molecular Systems . 2

1.3 Chaotic Systems . 4

1.4 Machine Learning . 4

1.5 Contributions . 6

2 Preliminaries 11
2.1 Neural Architectures . 11

2.1.1 Autoencoders . 11

2.1.2 Variational Autoencoders 11

2.1.3 Convolutional Neural Networks 13

2.1.4 Recurrent Neural Networks 13

2.1.5 Mixture Density Networks 16

2.2 Dynamical Systems . 19

2.2.1 The Kuramoto-Sivashinsky Equation 19

2.2.2 The Lorenz 96 Model 20

3 Coupling an RNN with a Mean Stochastic Model 23
3.1 Related Work . 23

3.2 Methods . 26

3.2.1 Training the LSTM-RNN 26

3.2.2 Mean Stochastic Model 27

3.3 Benchmark and Performance Measures 29

3.4 Results . 31

3.4.1 The Lorenz 96 Model 31

3.4.2 Kuramoto-Sivashinsky Equation 37

3.4.3 A Barotropic Climate Model 40

3.5 Sensitivity to Noise . 43

3.5.1 Lorenz 96 Model . 44

3.5.2 Kuramoto-Sivashinsky Equation 46

xi

xii contents

3.5.3 Barotropic Model . 48

3.6 Computational Cost of Prediction 49

3.7 Discussion . 49

4 RNNs for Dynamical Systems 53
4.1 Related Work . 53

4.2 Methods . 55

4.2.1 Gated Recurrent Unit 55

4.2.2 Unitary Evolution . 57

4.2.3 Backpropagation Through Time 58

4.2.4 Reservoir Computing 61

4.3 Comparison Metrics . 62

4.4 Reduced-Order Observable Dynamics in Lorenz 96 64

4.4.1 Dimensionality Reduction 65

4.4.2 Results on the Lorenz 96 Model 65

4.5 Parallel Forecasting Leveraging Local Interactions 76

4.5.1 Parallel Architecture . 77

4.5.2 Results on the Lorenz 96 Model 78

4.5.3 The Kuramoto-Sivashinsky Equation 80

4.5.4 Results on the KS Equation 80

4.6 Lyapunov Spectrum Calculation in KS 85

4.7 Discussion . 91

5 Scheduled Autoregressive BPTT 93
5.1 Related Work . 93

5.2 Methods . 96

5.2.1 Truncated Backpropagation Through Time 96

5.2.2 Autoregressive Backpropagation Through Time 97

5.3 Results . 99

5.3.1 The Mackey-Glass Equation 100

5.3.2 Viscous Flow Past a Cylinder in a Channel 101

5.4 Discussion . 105

6 Learning Effective Dynamics 109
6.1 Related Work . 109

6.2 Methods . 111

6.3 Comparison Measures . 114

contents xiii

6.3.1 Mean Normalised Absolute Difference 114

6.3.2 Pearson Correlation Coefficient 114

6.4 Results . 115

6.4.1 FitzHugh-Nagumo Model 115

6.4.2 The Kuramoto-Sivashinsky Equation 120

6.4.3 Viscous Flow Past a Cylinder 127

6.5 Discussion . 135

7 LED for Molecular Systems 137
7.1 Related Work . 137

7.2 Methods . 140

7.2.1 Mixture Density Network Autoencoder 140

7.2.2 LSTM . 143

7.2.3 Mixture Density LSTM Network 143

7.2.4 LED for Molecular Systems 144

7.3 Results . 145

7.3.1 Müller-Brown Potential 145

7.3.2 Trp Cage . 148

7.3.3 Alanine Dipeptide . 150

7.4 Discussion . 155

8 Conclusion and Outlook 157
8.1 Conclusions . 157

8.2 Outlook . 162

A Coupling an RNN with a Mean Stochastic Model 167
A.1 Methods . 167

A.1.1 Training and Inference 167

A.1.2 Weighting the Loss Function 169

A.1.3 LSTM Architecture . 170

A.2 Barotropic model . 170

B Recurrent Neural Networks 175
B.1 Memory Efficient Implementation of RC Training 175

B.2 Regularizing Training with Noise 176

B.3 Dimensionality Reduction with Singular Value Decomposition178

xiv contents

B.4 Hyperparameters . 180

B.5 Divergence of Unitary and RC RNNs in Lorenz 96 184

B.6 Results on Lorenz 96 for F = 10 187

B.7 Temporal Dependencies and Backpropagation 190

C Scheduled Autoregressive BPTT 193
C.1 Scheduled Autoregressive Backpropagation Through Time . . 193

C.1.1 Equation 5.4 . 193

C.1.2 Equation 5.6 . 193

C.2 Darwin Sea Level Temperatures 194

C.3 Mackey-Glass Equation . 194

C.4 Viscous Flow Past a Cylinder in a Channel 196

C.4.1 Data Generation . 196

C.4.2 Hyperparameters . 196

D Learning Effective Dynamics 199
D.1 FitzHugh-Nagumo Model . 199

D.2 The Kuramoto-Sivashinsky Equation 199

D.3 Viscous Flow Past a Cylinder 200

E LED for Molecular Systems 211
E.1 Müller-Brown Potential . 211

E.1.1 Definition of Metastable States 211

E.1.2 LED Hyperparameters 211

E.1.3 Timescales in the LED Latent Space 212

E.2 Trp Cage . 216

E.2.1 LED Hyperparameters 216

E.2.2 Marginal State Distributions 217

E.3 Alanine Dipeptide . 221

E.3.1 Metastable State Definition 221

E.3.2 LED Hyperparameters 221

E.3.3 Marginal State Distributions 222

E.3.4 Latent Metastable States 225

contents xv

Bibliography 229

N O M E N C L AT U R E

Mathematical conventions
(·)∗ Complex conjugate of (·)
(·)t+1, (·)t+∆t State (·) at next sampled timestep
∆t Sampling interval
δt Integrator timestep
〈·〉 Average of expression · (depending on context, statespace,

time, or both)
C The set of complex numbers
E Expectation
O Big O notation for runtime requirements
� Element-wise product
COV(·i, ·j) Covariance between vectors ·i and ·j
DFT(·) Discrete Fourier transform of ·
PSD(·) Power spectral density of signal ·
vec(·) Vectorization of vector ·
(·) Average of state · (depending on context, statespace, time, or

both)
R The set of real numbers
tanh Hyperbolic tangent activation

Latin & Greek symbols
(·)w Neural network (·) parametrized with weights w
(·)t State vector (·) at timestep t
β1, β2 Hyperparameters of Adam optimizer
F Function of the dynamics
I Unit matrix
b Bias of neural network
c Cell state of RNN
g Gate vector signals of RNN
h Hidden state of RNN
o Observable (full state, reduced order, or latent state)
σ Vector of standard deviations

xvi

nomenclature xvii

õ Prediction of observable
z̃ Prediction of latent state
W Matrix of weights of the neural network
w Weights of neural network
w? Optimized weights of neural network
x, s State vector
z Latent state vector
N Normal distribution
· ∼ p(·) State · is sampled according to probability density p
χ(s) Characteristic function
diag(·) Diagonal matrix with diagonal elements given by the vector

·
ε User defined threshold
η Learning rate
exp Exponentiation to Euler’s number
u Velocity field
ĥ Augmented hidden state of RNN
X̂ Fourier components
Fhh Hidden-to-hidden mapping of an RNN
Hh,Ho Contributions of the previous hidden state and the current

state to the next hidden state of RNN
Fho Hidden-to-output mapping of an RNN
κ1 Prediction horizon of BPTT
κ2 Truncation (backpropagation) length of BPTT
κ3 Teacher forcing length of BPTT
κB Boltzmann’s constant
Λ Lyapunov exponent
Λ1 Maximal Lyapunov exponent
ln Natural logarithm
H, Y Data matrices in RC training
D Decoder network
E Encoder network
L Neural network loss
T Temperature
Z Low-order manifold of the dynamics
µ Viscosity
ρ̃ Flow density field

xviii nomenclature

ν Viscosity parameter
Ω Simulation domain
ω Omega
Im(·) Imaginary part of complex state ·
Re(·) Real part of complex state ·
π Mixing coefficients of Mixture Model
ρ Ratio between macro and micro simulation time in LED
ρac(x, t) Activator density in FHN
ρin(x, t) Inhibitor density in FHN
Σ Covariance matrix
σ Standard deviation
σ(·) Standard deviation of state ·
σattractor Standard deviation of the state space
σen Ensemble standard deviation
σnoise Noise standard deviation
η̃ Tikhonov regularization parameter
X̃, t̃ Scaled state and time of Lorenz 96

$ Spectral radius of a matrix
Cd Drag coefficient
dh Dimension of hidden state
dr, dz Dimension of reduced order state
d(·) Dimension of state vector (·)
Dcyl Cylinder diameter
E Dirichlet energy
Ep Average energy fluctuation
F Forcing regime of Lorenz 96

fvs Vortex shedding frequency
G Group size of parallel model
I Interaction length of parallel model
Jhh
o , Jhh

h , Joh
h Jacobians of RNN states

L Boundary size (domain)
Lk

v Lower-triangular matrix
Ng Number of network members in parallel model
Nen Ensemble size
Npatience Patience in epochs for validation based adaption of the learn-

ing rate

nomenclature xix

Nrounds Number of rounds for validation based adaption of the learn-
ing rate

Ntrain Number of training samples
p Pressure field
p(·) Probability distributions
S Speed-up
T Simulation time
t Discretized timestep
TΛ1 Lyapunov time
Tm Simulation time in macro-scale
Tµ Simulation time in micro-scale
Tf Final simulation time
Ti→j MFPT or transition time from metastable state i to j
Twarm Warm-up time of non-Markovian model
u(x, t), v(x, t) Spatiotemporal field
ux Partial derivative ∂u/∂x
uxx Partial derivative ∂2u/∂x2

vcyl Cylinder speed
x, xi, xi Component i of the state vector

Dimensionless numbers
Re Reynolds number
St Strouhal number

Acronyms
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
ACC Anomaly Correlation Coefficient
AE Autoencoder
AE-RNN Autoencoder RNN
BPTT Backpropagation Through Time
BPTT-SA Scheduled Autonomous BPTT
BPTT-SS BPTT with Scheduled Sampling
CG Coarse Graining
CNN Convolutional Neural Network
CNN-RNN Convolutional Autoencoder RNN

xx nomenclature

ConvRNN RNN with convolutional filters
CPU Central Processing Unit
CSCS Swiss National Super-computing Centre
CSPDE EFF variants identifying PDEs on the coarse-grained state
CVs Collective Variables
DFT Discrete Fourier Transform
DiffMaps Diffusion Maps
DMD Dynamic Mode Decomposition
EFF Equation-Free Framework
end2end Network trained in an end-to-end fashion
EOFs Empirical Orthogonal Functions
ESN Echo State Network
FHN FitzHugh-Nagumo
FLAVOR FLow AVeraged integatoR
GP Gaussian Process
GPR Gaussian Process Regression
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HMM Heterogeneous Multiscale Method
HPC High Performance Computing
KS Kuramoto-Sivashinsky
Latent-LED LED macro dynamics (no alteration)
LB Lattice Boltzmann
LE Lyapunov Exponent
LED Learning Effective Dynamics
LS Lyapunov Exponent Spectrum
LSM Liquid State Machine
LSTM Long Short-Term Memory
MBP Müeller-Brown potential
MD Molecular Dynamics
MDN Mixture Density Network
MeSM Mean Stochastic Model
MFPT Mean first-passage time
MG Mackey-Glass
ML Machine Learning
MLE Maximal Lyapunov Exponent
MLP Multilayer Perceptron (Feedforward Neural Network)

nomenclature xxi

MNAD Mean Normalized Absolute Difference
MPI Message Passing Interface
MSE Mean Squared Error
Multiscale-LED LED with switching between micro and macro dynamics
NAD Normalized Absolute Difference
NN Neural Network
NRMSE Normalized Root Mean Squared Error
ODE Ordinary Differential Equation
PCA Principal Component Analysis
PDE Partial Differential Equation
RAM Random Access Memory
RAVE Reweighted Autoencoded Variational Bayes for Enhanced

sampling
RC Reservoir Computing
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SNR Signal to Noise Ratio
SVD Singular Value Decomposition
TICA Time-lagged Independent Component Analysis
Unitary Unitary evolution RNN cell
VAE Variational Autoencoder
VPT Valid Prediction Time

1
I N T R O D U C T I O N

1.1 multiscale systems

Some of the most important scientific advances and engineering designs
are founded on the study of complex systems that exhibit nonlinear dy-
namics spanning multiple spatio-temporal scales. Examples include protein
dynamics (Rackovsky et al., 2020), morphogenesis (Gilmour et al., 2017),
brain dynamics (P. A. Robinson et al., 2005), the climate (Council, 2012;
Warrach-Sagi et al., 2013), ocean dynamics (A. Mahadevan, 2016) and social
systems (Bellomo et al., 2011). Over the last fifty years, simulations have be-
come a key component of these studies thanks to a confluence of advances
in computing architectures, numerical methods, and software. Large scale
simulations have led to unprecedented insight, acting as in-silico micro-
scopes (E. H. Lee et al., 2009) or telescopes to reveal the dynamics of galaxy
formations (Springel et al., 2005). Massively parallel simulations (Dennis
et al., 2008; S.-J. Kim et al., 2008; Rasthofer et al., 2017) in High-Performance
Computing (HPC) architectures aim at resolving all spatio-temporal scales,
often at a prohibitive computational cost. At the same time, these sim-
ulations have led to the understanding that in many complex physical
phenomena resolving the full range of spatio-temporal scales will remain
out of reach in the foreseeable future.

A remedy is found by the design of reduced-order models (ROMs) (For-
rester et al., 2006) that reduce the complexity of the physical phenomena
under study and resolve only a part, e. g. the most energetic, of the sys-
tem scales. The computational cost of these models is lower than methods
resolving all scales, but their accuracy is limited by the approximations
involved, like linearization of the dynamics or heuristic closure schemes to
incorporate the effects of unmodelled system scales (Novati, de Laroussilhe,
et al., 2021).

In recent years there have been intense efforts to develop efficient simu-
lations that exploit the multiscale character of the systems under investi-
gation (Car et al., 1985; Erban et al., 2006; Kevrekidis, Gear, and Hummer,
2004; Kevrekidis, Gear, Hyman, et al., 2003; Kevrekidis and Samaey, 2009;

1

2 introduction

Weinan, Engquist, et al., 2003). Multiscale methods rely on prudent ap-
proximations of the interactions between processes occurring over different
scales, and a number of potent frameworks have been proposed, including
the Equation-Free Framework (EFF) (Bar-Sinai et al., 2019; Kevrekidis, Gear,
and Hummer, 2004; Kevrekidis, Gear, Hyman, et al., 2003; Laing et al., 2010),
the Heterogeneous Multiscale Method (HMM) (Weinan, Engquist, et al.,
2003, 2007; Weinan, X. Li, et al., 2004), and the FLow AVeraged integatoR
(FLAVOR) (M. Tao et al., 2010). These algorithms distinguish the system
dynamics into fine (fully resolved) and coarse (reduced-order) scales or
expensive and affordable simulations. Their success depends on the sep-
aration of scales inherent to the system dynamics and their capability to
capture the transfer of information between scales. Successful applications
of multiscale methodologies minimize the computational effort while maxi-
mizing the accuracy of the propagated dynamics. Multiscale methodologies
rely on three components, dimensionality reduction methods to identify
a reduced-order (latent) embedding, timestepping procedures to propa-
gate the reduced-order dynamics, and “lifting” operators to return to the
fine-scale descriptions.

A wide range of methods have been proposed in the context of di-
mensionality reduction, from linear methods (Cunningham et al., 2015),
e. g. Principal Component Analysis (PCA), or Dynamic Mode Decompo-
sition (DMD) (Kutz, Brunton, et al., 2016), to nonlinear (J. A. Lee et al.,
2007), e. g. Diffusion Maps (Coifman and Lafon, 2006) or kernel based meth-
ods (Bittracher, Klus, et al., 2021). The development of efficient timestepping
procedures in the reduced-order space and, more importantly, accurate
methods to return to the fine-scale description from the reduced-order one
have been hindered by the complex nonlinear nature of the reduced-order
dynamics and the difficulty in identifying nonlinear operators to recover the
full-scale description from reduced-order information. Although previously
proposed multiscale frameworks like the EFF, HMM, and FLAVOR, have
revolutionized the field, their generalization and scalability to nonlinear,
high-dimensional systems is hindered by these two critical issues: the ac-
curacy of the latent integrator and the encoding and lifting operators that
significantly affect the accuracy of the methods.

1.2 molecular systems

Over the last 30 years, molecular dynamics (MD) simulations of biological
macromolecules have advanced our understanding of their structure and

1.2 molecular systems 3

function (Karplus et al., 2002). Today MD simulations have become an
essential tool for scientific discovery in biology, chemistry, and medicine.
However, they remain hampered by their limited access to timescales of
biological relevance for protein folding pathways, conformational dynamics,
and rare-event kinetics.

In order to resolve this bottleneck, two complementary approaches have
been pursued. First efforts centered around innovative hardware solutions
started with crowdsourcing for computing cycles (Shirts et al., 2000) and
have more recently received a boost with the Anton machine (Shaw et al.,
2009) enabling remarkable, millisecond-long simulations of bio-molecules.
Complementary algorithmic efforts aim to advance timescales by system-
atic coarse-graining of the system dynamics. One of the first such studies
used the principal component or normal mode analysis to simulate the
conformational changes in proteins (Balsera et al., 1996; Brooks et al., 1983;
Ichiye et al., 1991; Praprotnik and Janežič, 2005; Skjaerven et al., 2011).
Several coarse-graining (CG) methods reduce the complexity of molecu-
lar systems by modeling several atoms as a single particle (Noid, 2013;
Wagner et al., 2016; Zavadlav et al., 2019). Backmapping techniques (Hess
et al., 2006; Pezeshkian et al., 2020; Stieffenhofer et al., 2020) can be sub-
sequently utilized to recover the atomistic degrees of freedom from a CG
representation. Multiscale approaches combine the atomistic and coarse-
grained/continuum models (Ayton et al., 2007; Praprotnik, Site, et al., 2008;
Werder et al., 2005) to augment the accessible timescales while significant
efforts have focused on enhanced sampling techniques (Dellago et al., 1998;
Huber et al., 1994; Inizan et al., 2021; Laio et al., 2002; Maragliano et al.,
2006; Van Erp et al., 2003; Voudouris, 1998). Several of these methods ex-
ploit the fact that coarse kinetic dynamics on the molecular level are often
governed by a few, slow collective variables (CVs), also termed reaction
coordinates (Bittracher, Banisch, et al., 2018; Bonati et al., 2020; Peters et
al., 2006; Stamati et al., 2010), or by transitions between a few long-lived
metastable states (Bittracher, Koltai, et al., 2018; Schütte et al., 2011).

The CVs are typically specified a priori and their choice crucially impacts
the performance and success of the respective sampling methods. Like the
CG models, the CVs provide a low-order representation of the molecular
system, albeit without a particle representation. CVs have much lower
dimensionality than CG models, and retrieving atomistic configurations
from CVs is a more challenging problem. While many research efforts have
addressed the fine to coarse mapping in CG models, the literature is still
scarce on retrieving atomistic configurations from CVs.

4 introduction

1.3 chaotic systems

Complex systems are typically chaotic and challenging to predict, a critical
issue in weather and climate forecasting problems. Minor prediction errors
propagate exponentially, rendering long-term forecasts inaccurate. The
works of Takens (Takens, 1981) and Sauer, Yorke, and Casdagli (Sauer et al.,
1991) showed that the dynamics on a D-dimensional attractor of a dynamical
system can be unfolded in a time-delayed embedding of dimension greater
than 2D. The identification of a useful embedding and the construction of a
forecasting model has been the subject of life-long research efforts (Bradley
et al., 2015).

Efforts to comprehend and forecast the dynamics of such complex, chaotic
systems have spurred developments in large-scale simulations, dimension-
ality reduction techniques, and forecasting methods. The goals of under-
standing and prediction have been complementing each other but have
been hindered by the high-dimensionality and chaotic behavior of these
systems. We have observed a convergence of these approaches in recent
years due to advances in computing power, algorithmic innovations, and
data availability. A major beneficiary of this convergence are data-driven
dimensionality reduction methods (Arbabi et al., 2017; Kerschen et al., 2005;
Kutz, Fu, et al., 2016; Rowley, 2005; Sapsis et al., 2013; Tu, 2013; M. O.
Williams et al., 2015), model identification procedures (Bongard et al., 2007;
Brunton, Proctor, et al., 2016; Duriez et al., 2017; Farazmand et al., 2016;
Krischer et al., 1993; A. J. Majda and Y. Lee, 2014; Milano et al., 2002; Scha-
effer, 2017) and forecasting techniques (Abdollahzade et al., 2015; Comeau
et al., 2017; Cousins et al., 2014, 2016; Einicke et al., 1999; Julier et al., 1997;
Y. Lee et al., 2016; Y. Lin et al., 2011; Marques et al., 2006; Quade et al.,
2016) that aim to provide precise short-term predictions while capturing
the long-term statistics of these systems. Successful forecasting methods
address the highly nonlinear energy transfer mechanisms between modes
not captured effectively by the dimensionality reduction methods.

1.4 machine learning

Over the last years, machine learning (ML) algorithms have exploited
the widespread availability of data, and powerful computing architec-
tures (Kurth et al., 2018), to provide us with remarkable successes across
scientific disciplines from physics (Baldi et al., 2014; Brunton, Proctor, et al.,

1.4 machine learning 5

2016; Champion et al., 2019; Lusch et al., 2018; Novati, L. Mahadevan, et al.,
2019; Raissi et al., 2019; Wan and Sapsis, 2018), biology (Alipanahi et al.,
2015; Jumper et al., 2021), fluid dynamics (Brunton, Noack, et al., 2019, 2020;
Wan and Sapsis, 2018), climate modeling (Kurth et al., 2018), mathemat-
ics (Davies et al., 2021; Han et al., 2018), signal processing (Oord, Dieleman,
et al., 2016), image and language processing (Pennington et al., 2014), com-
puter vision (Gregor, Danihelka, Graves, et al., 2015; Krizhevsky et al., 2017),
to medicine and drug discovery (H. Chen et al., 2018). ML offers potent
tools that can address the challenges in the design of multiscale algorithms
for the simulation of multiscale systems from fluid flows to molecules.
Moreover, in cases where models based on first-principles (e. g. mathemati-
cal equations derived from physics) are not available, but some underlying
dynamics are manifested in the form of available data from an observable of
the system, data-driven ML methods can be employed to derive surrogate
or ROMs that mimick the dynamics.

Recurrent Neural Networks (RNNs) are ML architectures tailored for
sequential or time series data (Y. Bengio et al., 1994; Goodfellow et al.,
2016; Hochreiter and Schmidhuber, 1997; Pascanu et al., 2013). RNNs
are universal function approximators (Schäfer et al., 2006; Siegelmann et
al., 1995) and can capture nonlinear and non-Markovian dynamics. The
potential of RNNs for capturing temporal dynamics in physical systems was
explored first using low-dimensional RNNs (Elman, 1990) with simple cell
architectures to predict unsteady boundary-layer development, separation,
dynamic stall, and dynamic reattachment back in 1997 (Faller et al., 1997).
The utility of RNNs was limited by the finding that during the learning
process, the gradients may vanish or explode. In turn, the recent success
of RNNs (Ahmad et al., 2004; Gregor, Danihelka, Graves, et al., 2015) is
largely attributed to a cell architecture termed Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). LSTMs employ gates that
effectively remember and forget information, thus alleviating the problem
of vanishing gradients (Hochreiter and Schmidhuber, 1997). In Wan and
Sapsis, 2018 LSTM networks are used as surrogates to model the kinematics
of spherical particles in fluid flows. In Wan, P. Vlachas, et al., 2018 the
LSTM is deployed to model the residual dynamics in an imperfect Galerkin-
based reduced-order model derived from the system equations. LSTM-
RNNs offer a potent alternative on the one hand to model and analyze
complex, chaotic spatio-temporal dynamics and on the other hand, to
model the reduced-order dynamics in multiscale algorithms. Nevertheless,
data-driven forecasting of chaotic or complex dynamics with RNNs is

6 introduction

challenging for four main reasons, (i) partial observability (reduced-order
information of the state), (ii) under-resolved dynamics (insufficient training
data near the attractor boundaries), (iii) vanishing gradients during training
of RNNs (Hochreiter, 1998), (iv) distributional shift in long-term forecasting
during testing (as predictions of the model are iteratively propagated).

Autoencoders (AEs) (Kramer, 1991) are powerful nonlinear dimension-
ality reduction methods that can embed the physical properties of the
system under study or properties of the data in the form of a geometric
prior, e. g. energy constraints, translation invariance using Convolutional
Neural Networks (CNNs) (Gu et al., 2018), or permutation invariance (Noé,
Tkatchenko, et al., 2020). AEs have been used to identify a linear latent
space based on the Koopman framework (Lange et al., 2021; Lusch et al.,
2018), or model high-dimensional fluid flows (Geneva et al., 2020; Milano
et al., 2002). AEs coupled with LSTMs are used in Gonzalez et al., 2018;
Hasegawa et al., 2020; Maulik et al., 2021 to model fluid flows. Mixture
Density Networks (MDN) (Bishop, 1994) are expressive data-driven models
of probability density distributions. They are potent algorithms that can be
employed to model stochastic dynamics or probabilistic mappings from the
reduced-order space to the full-scale description in multiscale algorithms.
The utilization of AEs and MDNs to identify accurate operators to recover
the full-scale description from reduced-order information in multiscale
algorithms has been unexplored.

1.5 contributions

This thesis presents an extensive analysis of data-driven machine learning
algorithms and novel training procedures for modeling chaotic spatio-
temporal dynamics and introduces a versatile framework for accelerating
multiscale simulations of complex systems by learning their effective dy-
namics (LED). The effectiveness of the LED framework is demonstrated
in a wide range of applications from fluid flows to molecular systems,
accelerating the full-scale solvers by orders of magnitude without sacrific-
ing accuracy. The ML methods developed in this thesis extend the arsenal
of powerful computational tools available to the broader scientific com-
munity that cope with the challenges of chaos, multiscale problems, or
problems where models based on first principles are not available. A list of
publications is appended to this thesis.

1.5 contributions 7

Chapter 3: Coupling an LSTM-RNN with a Mean Stochastic Model

In this chapter, we demonstrate how LSTM-RNNs can be employed to
forecast effectively high-dimensional spatio-temporal chaotic dynamics. We
tackle the first two issues of data-driven forecasting with RNNs, namely (i)
partial observability and (ii) under-resolved dynamics (insufficient training
data near the attractor boundaries). These issues are addressed by propos-
ing an LSTM based prediction framework coupled with an equation-based
Mean Stochastic Model (MeSM). The LSTM is learning local dynamics from
data. The MeSM is constructed to mimic the global attractor dynamics.
A hybrid network is proposed, where the MeSM is utilized on attractor
regions where data is not available. The methods are benchmarked against
state-of-the-art algorithms based on Gaussian Process Regression (GPR) in
the Lorenz-96 system, the Kuramoto-Sivashinsky equation, and a Barotropic
climate model. We show that the LSTM-RNN is superior in short-term fore-
casting, but predictions eventually diverge from the attractor and become
unphysical due to the iterative error propagation and undersampled re-
gions near the boundaries. In contrast, we demonstrate that the hybrid
method (LSTM-MeSM) exhibits lower error in the long term, and the error
eventually converges to the invariant measure.

Chapter 4: Training Algorithms and Scalability of RNNs for Forecasting Dynamical
Systems

In this chapter, we concentrate on the vanishing gradients problem of RNNs
and scalability to high-dimensional spatio-temporal chaotic systems. We
study four prominent RNN cell architectures in terms of their effectiveness
in short-term predictability and long-term behavior (capturing attractor
statistics) in both cases of full state observability and reduced-order state
(partial observability). The methods are benchmarked in the Lorenz-96 sys-
tem and the Kuramoto-Sivashinsky equation. We find that fixing the hidden
internal dynamics of the RNN cell, according to the Reservoir Computing
paradigm, can be beneficial in the case of full state information. In the
more challenging case of reduced-order information of the state, which is
more relevant in practice, gated architectures show superior performance.
Moreover, we demonstrate how a trained RNN can be utilized to compute
the Lyapunov exponent spectrum of a dynamical system in a data-driven
manner. We present a parallel framework to scale these methods to very

8 introduction

high-dimensional spatio-temporal systems in case of a fully observable
state with local dependencies.

Chapter 5: Scheduled Autoregressive Backpropagation Through Time for Long-Term
Forecasting

In this chapter, we focus on the problem of accumulated prediction errors
in iterative forecasting with RNNs, and propose a novel training method
that considers the iterative forecasting (autoregressive) error. We propose a
scheduled approach, where the standard one step ahead prediction loss is
minimized at early training epochs, while the loss is gradually switching
to the autoregressive version at later stages. We benchmark our approach
to other state-of-the-art training methods demonstrating that it leads to
better long-term predictive performance in forecasting the dynamics of
the Mackey-Glass time series and the viscous Navier-Stokes past behind a
cylinder in a channel at Reynolds number Re = 100.

Chapter 6: Learning Effective Dynamics

In this chapter, we present a framework to accelerate multiscale simula-
tions of complex systems by learning their effective dynamics (LED). The
LED resolves two critical issues of previously proposed multiscale simu-
lation frameworks: the accuracy of the timestepper in the reduced-order
space and the identification of encoding and accurate lifting operators. This
is achieved by ML algorithms that (i) deploy RNNs with gating mecha-
nisms to evolve the coarse-grained dynamics and (ii) employ advanced AEs
to transfer in a systematic, data-driven manner the information between
coarse and fine-scale descriptions. The framework is benchmarked on the
FitzHugh-Nagumo equation, the Kuramoto-Sivashinsky equation, and the
Navier-Stokes flow past a cylinder at Re ∈ {100, 1000}. The LED is orders of
magnitude faster than the micro-scale solvers while maintaining predictive
accuracy. By switching between the reduced-order latent dynamics (LSTM-
RNN propagator of LED) and propagation of the full high-dimensional
dynamics using the micro-scale solver, the predictive accuracy is further in-
creased at the cost of reduced speed-up. We demonstrate that LED unravels
the inertial manifold of the Kuramoto-Sivashinsky equation and reproduces
the long-term climate of the dynamics. We show that LED captures the long-
term dynamics of the Navier-Stokes flow past a cylinder at the challenging

1.5 contributions 9

case of Re = 1000, even though propagating drastically reduced-order
latent state dynamics compared to other literature. Moreover, a benchmark
with other latent state propagators indicates that the LSTM-RNN is the
most prominent, demonstrating high predictive accuracy in all applications.

Chapter 7: LED for Molecular Systems

This chapter extends LED to incorporate probabilistic dynamics on the latent
space and apply it to molecular systems. Other state-of-the-art approaches
rely on memory-less (Markovian) latent dynamics. LED alleviates this
assumption by employing probabilistic RNNs on the latent space and
probabilistic Autoencoders to map from a reduced-order description to
molecular configurations. We demonstrate the effectiveness of LED to
capture the timescales, kinetics, and statistics in Langevin particle dynamics
in the Müeller-Brown potential and prototypical molecular systems, i.e., the
alanine dipeptide and the Trp Cage miniprotein. LED accurately reproduces
the kinetics and statistics in the molecular systems while being three orders
of magnitude faster than the molecular dynamics solver.

We summarize the contribution of this work and provide avenues for
future research in Chapter 8.

2
P R E L I M I N A R I E S

2.1 neural architectures

2.1.1 Autoencoders

Classical autoencoders are nonlinear neural networks that map an input to
a low-dimensional latent space and then decode it to the original dimension
at the output, trained to minimize the reconstruction loss L = |x − x̃|2.
They were proposed in Kramer, 1991 as a nonlinear alternative to Principal
Component Analysis (PCA). An autoencoder is depicted in Figure 2.1(a).

2.1.2 Variational Autoencoders

Research efforts on generative modeling led to the development of Vari-
ational Autoencoders (VAEs). The VAE, similar to AE is composed of an
encoder and a decoder. The encoder neural network, instead of mapping
the input x deterministically to a reduced-order latent space z, produces
a distribution q(z|x; wq) over the latent representation z, where wq is the
parametrization of the distribution given by the output of the encoder
wq = EwE (x). In most practical applications, the distribution q(z|x; wq) is
modeled as a factorized Gaussian, implying that wq is composed of the
mean, and the diagonal elements of the covariance matrix. The decoder
maps a sampled latent representation to an output x̃ = DwD (z). By sam-
pling the latent distribution q(z|x; wq), for a fixed input x, the autoencoder
can generate samples from the probability distribution over x̃ at the de-
coder output. The network is trained to maximize the log-likelihood of
reproducing the input at the output, while minimizing the Kullback-Leibler
divergence between the encoder distribution q(z|x; wq) and a prior distri-
bution, e. g. N (0, I). VAEs are essentially regularizing the training of AE by
adding the Gaussian noise in the latent representation. Here, we consider a
Gaussian latent distribution with diagonal covariance matrix is considered,
i.e.,

q(z | x; µz, σz) = N
(
z | µz(x), diag(σz(x))

)
, (2.1)

11

12 preliminaries

Autoencoders

DECODER
Reconstruction

x̃
z

Low dimensional
latent space

ENCODERx

High dimensional
state

(a) Classical Autoencoder

Autoencoders

ENCODERx

High dimensional
state

DECODER
Reconstruction

x̃
μz

Low dimensional
latent space

⏟

σz
z = μz + σz ⊙ ϵ

⏟

ϵ ∼ #(0, I)

(b) Variational Autoencoder

Figure 2.1: (a) A schematic diagram of a classical Autoencoder (AE). A high-
dimensional state x is mapped to a low-dimensional feature space
z by applying the encoder transformation through multiple fully
connected layers. The low-dimensional feature space z is expanded in
the original space by the decoder. The autoencoder is trained with the
loss L = ||x− x̃||2, so that the input can be reconstructed as faithfully
as possible at the decoder output. (b) A schematic diagram of a
Variational Autoencoder (VAE). Instead of modeling the latent space
deterministically, the encoder outputs a mean latent representation
µz, along with the associated uncertainty σz. The latent space z is
sampled from a normal distribution z ∼ N (·|µz, diag(σz)), with
diagonal covariance matrix.

2.1 neural architectures 13

where wq = (µz, σz) and the mean latent representation µz and the variance
σz vectors are the outputs of the encoder neural network EwE (x). The latent
representation is then sampled from z ∼ N (µz, diag(σz)). The decoder
receives as an input the sample and outputs the reconstruction x̃. A VAE is
depicted in Figure 2.1(b).

2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are tailored to process image
data with spatial correlations. Each layer of a CNN is processing a multi-
dimensional input (with a channel axis and some spatial axes) by applying
a convolutional kernel or filter that slides along the input spatial axes. In
other words, CNNs consider the structure in the data in their architecture,
which is a form of a geometric prior. Here, CNN layers are used in the
autoencoder by introducing a bottleneck layer, reducing the dimensionality.
Other dimensionality reduction techniques, like AEs, Principal Component
Analysis (PCA) (Shlens, 2014), or Diffusion maps (DiffMaps) (Coifman,
Kevrekidis, et al., 2008) that are based on vectorization of input field data
do not take into account the structure of the data, i. e. when an input field
is shifted by a pixel, the vectorized version will differ a lot, while the
convoluted image will not.

2.1.4 Recurrent Neural Networks (RNNs)

A Recurrent Neural Network (RNN) is a machine learning architecture
designed to process sequential data, i. e. temporal time series. In this work,
we consider RNNs for time series forecasting. The models are trained
on time series of an observable o (e. g. latent state z with reduced-order
information, or full state s) sampled at a fixed rate 1/∆t, {o1, . . . , oT},
where we eliminate ∆t from the notation for simplicity. The models possess
an internal high-dimensional hidden state denoted by ht ∈ Rdh that enables
the encoding of temporal dependencies on past state history. Given the
current input (observable) ot, the output of each model is a forecast õt+1 for
the observable at the next time instant ot+1. This forecast is a function of the
hidden state. In this way, RNNs can capture nonlinear and non-Markovian
dynamics.

14 preliminaries

The forecasting rule of the RNN is given by

ht = F
wFhh
hh

(
ot, ht−1

)
, õt+1 = FwFho

ho
(
ht
)
, (2.2)

where Fhh is the hidden-to-hidden mapping and Fho is the hidden-to-
output mapping. wFhh and wFho are the trainable parameters of Fhh and
Fho respectively. ht ∈ Rdh is an internal hidden memory state, and õt+1 is a
prediction of the observable.

All recurrent models in this work share this common architecture. They
differ in the realizations of Fhh and Fho and how the parameters or weights
of these functions are learned from data, i.e., trained, to forecast the dynam-
ics.

The RNN is trained to minimize the forecasting loss ||õt+1 − ot+1||22,
which can be written as

||õt+1 − ot+1||22 = ||FwFho
ho

(
ht
)
− ot+1||22 = (2.3)

= ||FwFho
ho

(
FwFhh

hh
(
ot, ht−1

))
− ot+1||22. (2.4)

This leads to

w?
Fhh

, w?
Fho

= arg min
wFhh

,wFho

||FwFho
ho

(
FwFhh

hh
(
ot, ht−1

))
− ot+1||22. (2.5)

RNNs are commonly trained with Backpropagation Through Time (BPTT) (P. J.
Werbos, 1988). In many practical applications, RNNs suffer from the vanish-
ing (or exploding) gradient problem and have failed to capture long-term
dependencies Y. Bengio et al., 1994; Hochreiter, 1991, 1998. Today, the RNNs
owe their renaissance to gating architectures that cope effectively with
the abovementioned problem. Gating architectures have been successfully
applied in sequence modeling Schmidhuber et al., 2005, speech recognition
Graves, Mohamed, et al., 2013, hand-writing recognition Graves, Fernández,
et al., 2008 and language translation Y. Wu et al., 2016.

The output mapping is given by a linear transformation, i.e.

õt+1 = Wh,oht + bo, (2.6)

where Wh,o ∈ Rdo×dh , bo ∈ Rdo . As a consequence, the set of trainable
weights of the hidden-to-output mapping is just one matrix wFho = Wh,o ∈
Rdo×dh and one vector bo.

2.1 neural architectures 15

ot

tanh

ht−1 ht

ht

(a) Elman RNN Cell

ot

ht−1
σ

go
t

ht

ht

ct−1 ct�

gf
t

gi
t

σ

+

tanh

�
tanh

c̃t

�

σ

(b) LSTM Cell

Figure 2.2: The information flow in an (a) Elman cell and (b) a Long Short-Term
Memory (LSTM) cell. The LSTM cell employs gating mechanisms to
alleviate the vanishing gradients problem of Elman RNNs. The gating
mechanisms allow forgetting and storing information in the hidden
state processing. Ellipses and circles denote entry-wise operations,
while rectangles denote layer operations.

2.1.4.1 Elman RNN

The Elman RNN possesses a hidden state h. The hidden-to-hidden mapping
FwFhh

hh is defined by

ht = tanh
(
Wh,oot + Wh,hht−1 + bh

)
, (2.7)

where bh ∈ Rdh , Wh,o ∈ Rdh×do , and Wh,h ∈ Rdh×dh . The dimension of the
hidden state dh (number of hidden units) controls the capacity of the cell to
encode history information. The set of trainable parameters of the recurrent
mapping FwFhh

hh is given by

wFhh = {bh, Wh,o, Wh,h.} (2.8)

An illustration of the information flow in an Elman RNN is given in Fig-
ure 2.2(b).

2.1.4.2 Long Short-Term Memory Unit (LSTM)

In Elman RNNs (Elman, 1990), the vanishing or exploding gradients prob-
lem stems from the fact that the gradient is multiplied repeatedly dur-
ing backpropagation through time (P. J. Werbos, 1988) with a recurrent

16 preliminaries

weight matrix. Consequently, when the spectral radius of the weight ma-
trix is positive (negative), the gradients are prone to explode (shrink). The
LSTM (Hochreiter and Schmidhuber, 1997) was introduced in order to
alleviate the vanishing gradient problem of Elman RNNs by leveraging
gating mechanisms that allow information to be forgotten. The LSTM pos-
sesses two hidden states, a cell state c and an internal memory state h. The
equations that implicitly define the hidden-to-hidden (recurrent mapping
Fhh) mapping

ht, ct = F
wFhh
hh

(
ot, ht−1, ct−1

)
(2.9)

of the LSTM are given by

g f
t = act f

(
W f [ht−1, ot] + b f

)
gi

t = acti
(
Wi[ht−1, ot] + bi

)

c̃t = tanh
(
Wc[ht−1, ot] + bc

)
ct = g f

t � ct−1 + gi
t � c̃t

go
t = acth

(
Wh[ht−1, ot] + bh

)
ht = go

t � tanh(ct),

(2.10)

where g f
t , gi

t, go
t ∈ Rdh , are the gate vector signals (forget, input and output

gates), ot ∈ Rdo is the observable input at time t, ht ∈ Rdh is the hidden state,
ct ∈ Rdh is the cell state, while W f , Wi, Wc, Wh ∈ Rdh×(dh+do), are weight
matrices and b f , bi, bc, bh ∈ Rdh biases. The symbol � denotes the element-
wise product. The activation functions act f , acti and acth are sigmoids. For a
more detailed explanation of the LSTM cell architecture refer to (Hochreiter
and Schmidhuber, 1997). The dimension of the hidden state dh (number of
hidden units) controls the capacity of the cell to encode history information.
The set of trainable parameters of the recurrent mapping FwFhh

hh is given by

wFhh = {b f , bi, bc, bh, W f , Wi, Wc, Wh} (2.11)

The forget gate bias is frequently initialized to one according to Bowman
et al., 2015 to accelerate training. An illustration of the information flow in
an LSTM cell is given in Figure 2.2(b).

2.1.5 Mixture Density Networks

Mixture density networks (MDNs) (Bishop, 1994) are powerful neural
networks that can model non-Gaussian, multi-modal data distributions.
The outputs of MDNs are parameters of a mixture density model (mixture
of probability density functions). The most generic choice of the mixture
component distribution is the Gaussian distribution. Gaussian MDNs are

2.1 neural architectures 17

widely deployed in machine learning applications to model structured
dynamic environments, i. e. (video) games. The effectiveness of MDNs,
however, in modeling physical systems remains unexplored.

In physical systems, the state may be bounded. In this case, the choice of a
Gaussian MDN is problematic due to its unbounded support. To make mat-
ters worse, most applications of Gaussian MDNs when modeling random
vectors do not consider the interdependence between the vector variables,
i. e. the covariance matrix of the Gaussian mixture components is diagonal,
in an attempt to reduce their computational complexity. Arguably in the
applications where they were successful, modeling this interdependence
was not imperative. In contrast, in physical systems, the variables of a state
might be very strongly dependent on each other. In order to cope with
these problems, the following approach is considered: We assume that the
input to the MDN is a reduced-order latent state z. We further assume
that at the output of the MDN we want to model the distribution of a
high-dimensional state x. Firstly, an auxiliary vector variable is considered
v along with its distribution p(v|z). v ∈ Rdx has the same dimensionality
dx as the high-dimensional state (input/output of the autoencoder). The
distribution is modeled as a mixture of K multivariate normal distributions

p(v|z) =
K

∑
k=1

πk(z)N
(

µk
v(z), Σk

v(z)
)

, (2.12)

The multivariate normal distribution is parametrized in terms of a mean
vector µk

v, a positive definitive covariance matrix Σk
v, and the mixing coeffi-

cients πk which are functions of z. The covariance matrix is parametrised by
a lower-triangular matrix Lk

v with positive-valued diagonal entries, such that
Σk

v = Lk
vLk T

v ∈ Rdx×dx (This triangular matrix can be recovered by Cholesky
factorization of the positive definite Σk

v). The functional forms of πk(z) ∈ R,
µv(z) ∈ Rdx , and the n(n + 1)/2 entries of Lk

v are neural networks, their
values are given by the outputs of the decoder for all mixture components
k ∈ {1, . . . , K}, i. e. wD = DwD (z) = {πk, µk

v, Lk
v}1,...,K. The positivity of the

diagonal elements of Lk
v is ensured by a softplus activation function

f (x) = ln(1 + exp(x)) (2.13)

in the respective outputs of the decoder. The mixing coefficients satisfy
0 ≤ πk < 1 and ∑K

k=1 πk = 1. To ensure these conditions, the respective
outputs of the decoder are passed through a softmax activation

softmax(x)i =
exi

∑i exi
. (2.14)

18 preliminaries

The rest (non-diagonal elements and mean vector) of the decoder outputs
have linear activations, so there is no restriction in their sign. In total, the
decoder output is composed of K(n− 1)n/2 + Kn single-valued outputs
with linear activation for the non-diagonal elements of Lk

v and the mean
vectors µk

v, and Kn positive outputs with “softplus” activation for the
diagonal of Lk

v, and K outputs with softmax activation for the mixing
coefficients.

DECODER

Reconstruction

v ∼
K

∑
k=1

πk "(μk
v, Σk

v)
Low dimensional

latent space

z

μv1

⏟
Σv

1

μvK

…

Σv
K

…

x̃ (v) = 1
1 + exp(−v)

v ∈ ℝdx

v = log(1
1 + exp(−x̃))

x̃ ∈ [0,1]dxπ1 …
πK

⏟

High
dimensional

space

Figure 2.3: A mixture density network modeling the probability density p(x̃|z),
with bounded x̃. The decoder maps the latent state z to the parameters
of a mixture model on the latent vector v ∈ Rdx , which are the
mixing coefficients πk ∈ R, mean vectors µk

v ∈ Rdx , and a lower-
triangular matrix Lk

v ∈ Rdx×dx with positive-valued diagonal entries.
From the latter, the covariance matrix is derived from Σk

v = Lk
vLk T

v
which is positive definite by construction. The mixture models the
probability distribution of the latent state p(v|z). The targets, however,
used to train the network in a supervised way are defined on the
reconstruction x̃. The targets are scaled to x̃ ∈ [0, 1]dx , and then
transformed to targets for v using the inverse of the softplus activation.
The MDN autoencoder is trained to maximize the likelihood p(v|z)
of the transformed data v.

MDNs can be employed in stochastic systems, e. g. in order to model
molecular systems. We assume that the high-dimensional state of the molec-
ular system is described by st ∈ Rds . The decoder DwD is modeled with
an MDN. The MDN approximates the probability distribution of the state
s̃t ∼ p(·; wMDN), where wMDN = DwD (zt) is the output of the decoder that

2.2 dynamical systems 19

parametrizes the distribution. The optimal parameters of the MDN autoen-
coder are identified by maximizing the log-likelihood of the reconstruction,

w?
E , w?

D = arg max
wE ,wD

log p
(
st; wMDN

)
,

where wMDN = DwD (zt) = DwD
(
EwE (st)

)
.

2.2 dynamical systems

2.2.1 The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial differential
equation (PDE) of fourth order, first derived by Kuramoto (Kuramoto, 1978;
Kuramoto and Tsuzuki, 1976) as a turbulence model of the phase gradient
of a slowly varying amplitude in a reaction-diffusion type medium with
negative viscosity coefficient. Later, Sivashinsky (Sivashinsky, 1977) studied
the spontaneous instabilities of the plane front of a laminar flame ending
up with the KS equation, while in Sivashinsky and Michelson, 1980 the KS
equation is found to describe the surface behavior of viscous liquid in a
vertical flow.

In this work, we restrict ourselves to the one-dimensional (1D) KS equa-
tion with boundary and initial conditions given by

∂u
∂t

= −ν
∂4u
∂x4 −

∂2u
∂x2 − u

∂u
∂x

, (2.15)

where u(x, t) is the modeled quantity of interest depending on a spatial
variable x ∈ [0, L] and time t ∈ [0, ∞). L denotes the dimensionless bound-
ary size. The negative viscosity is modeled by the parameter ν > 0. In
order to spatially discretize Equation 2.15 we select a grid size ∆x with
D = L/∆x + 1 the number of nodes. Further, we denote with ui = u(i∆x)
the value of u at node i ∈ {0, . . . , D − 1}. Discretization using a second
order differences scheme yields

dui
dt

= −ν
ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆x4 − ui+1 − 2ui + ui−1

∆x2 − u2
i+1 − u2

i−1
4∆x

. (2.16)

The Kuramoto-Sivashinsky equation exhibits different levels of chaos de-
pending on the bifurcation parameter L̃ = L/2π

√
ν (Kevrekidis, Nico-

laenko, et al., 1990). Higher values of L̃ (or smaller values of ν) lead to more

20 preliminaries

chaotic systems (Wan and Sapsis, 2017). For large values of L, the attractor
dimension scales linearly with L (Manneville, 1984).

A plot of the KS dynamics with Dirichlet and second-type boundary
conditions is given in Figure 2.4(b).

(a)

100 101 102

Number of modes used

0

20

40

60

80

100

C
u

m
u

la
ti

ve
E

n
er

gy
in

%

(b)

Figure 2.4: (a) Contour plots of the solution u(x, t) of the Kuramoto-Sivashinsky
equation for different values of ν in steady-state. Chaoticity rises
with smaller values of ν. (b) Cumulative energy as a function of the
number of the PCA modes for different values of ν.
1/ν = 10 ; 1/ν = 16 ; 1/ν = 36 ; 20 modes

2.2.2 The Lorenz 96 Model

In E. Lorenz, 1995 a model of the large-scale behavior of the mid-latitude
atmosphere is introduced. This model describes the time evolution of the
components xj for j ∈ {0, 1, . . . , J − 1} of a spatially discretized (over a
single latitude circle) atmospheric variable. The atmospheric variable is
denoted with x = [x0, . . . , xJ−1]. In the following we refer to this model
as the Lorenz 96. The Lorenz 96 is employed in Basnarkov et al., 2012;
Wan and Sapsis, 2017 as a toy problem to benchmark methods for weather
prediction.

Lorenz 96 is described by a system of coupled ordinary differential
equations (ODEs) given by

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F, (2.17)

for j ∈ {0, 1, . . . , J − 1}, where by definition we assume periodic boundary
conditions x−1 = xJ−1, x−2 = xJ−2. The right-hand side of Equation 2.17

2.2 dynamical systems 21

consists of a non-liner adjective term (xj+1 − xj−2)xj−1 − xj, a linear ad-
vection (dissipative) term −xj and a positive external forcing term F. The
discrete energy of the system remains constant throughout time and the
Lorenz 96 states xj remain bounded. By increasing the external forcing
parameter F the behavior that the system exhibits changes from periodic
F < 1 to weakly chaotic (F = 4) to end up in fully turbulent regimes
(F = 16). These regimes can be observed in Figure 2.5.

Figure 2.5: Lorenz 96 contour plots for different forcing regimes F. Chaoticity
rises with bigger values of F.

3
C O U P L I N G A N L S T M - R N N W I T H A M E A N S T O C H A S T I C
M O D E L

3.1 related work

In the context of modeling and prediction of chaotic dynamical systems,
early application of neural networks can be traced to the work of (Lapedes
et al., 1987), where they demonstrated the efficiency of feedforward artifi-
cial neural networks, in this case, multilayer perceptrons (MLPs), to model
deterministic chaos. As an alternative to MLPs, wavelet networks were
proposed in L. Cao et al., 1995 for chaotic time series prediction. However,
these works have been limited to intrinsically low-order systems, and they
have been often deployed in conjunction with dimensionality reduction
tools. In Lusch et al., 2018, MLPs are employed to identify an embedding
space with linear dynamics that is then amenable to theoretical analysis.
RNNs are practical and efficient data-driven approximators of chaotic dy-
namical systems due to their (1) universal approximation ability (Schäfer
et al., 2006; Siegelmann et al., 1995) and (2) ability to capture temporal
dependencies and implicitly identify the required embedding for forecast-
ing. Early applications of RNNs to chaotic dynamics were limited by the
vanishing gradients problem, and focused on low-order systems (Gers,
Eck, et al., 2002). Similarly, other machine learning techniques based on
Multi Layer Perceptrons (MLP) (Rico-Martinez et al., 1992), Echo State Net-
works (ESNs) (Chatzis et al., 2011; Jaeger et al., 2004), Reservoir Computing
(RC) (Lukoševičius and Jaeger, 2009), or radial basis functions (Broomhead
et al., 1988; K. B. Kim et al., 2000) have been successful, albeit only for
low-order dynamical systems. In recent years (Bianchi et al., 2017) RNN
architectures have been benchmarked for short-term load forecasting of de-
mand and consumption of resources in a supply network, while in Laptev
et al., 2017 they are utilized for extreme event detection in low-dimensional
time series. RC and LSTM networks are applied in the long-term forecasting
of partially observable chaotic chimera states in Neofotistos et al., 2019.
Instead of an utterly model-free approach, ground-truth measurements of
currently observed states are helping to improve the long-term forecasting
capability.

23

24 coupling an rnn with a mean stochastic model

Historically, the pioneering technique of analog forecasting proposed
in E. N. Lorenz, 1969 inspired widespread research in non-parametric pre-
diction approaches. Two dynamical system states are called analogues if
they resemble one another on the basis of a specific criterion. This class of
methods uses a training set of historical observations of the system. The
system evolution is predicted using the evolution of the closest analogue
from the training set corrected by an error term. This approach has led to
promising results in practice (Xavier et al., 2007) but the selection of the
resemblance criterion to pick the optimal analogue is far from straightfor-
ward. Moreover, the geometrical association between the current state and
the training set is not exploited. More recently (Zhao et al., 2016), analog
forecasting is performed using a weighted combination of data pointss
based on a localized kernel that quantifies the similarity of the new point
and the weighted combination. This technique exploits the local geome-
try instead of selecting a single optimal analogue. Similar kernel-based
methods, (Chiavazzo et al., 2014) use diffusion maps to parametrize a low-
dimensional manifold capturing the slower timescales globally. Moreover,
non-trivial interpolation schemes are investigated to encode the system
dynamics in this reduced-order space and map them to the full space (lift-
ing). Although the geometrical structure of the data is taken into account,
the solution of an eigensystem with a size proportional to the training
data is required, rendering the approach computationally expensive. In
addition, the inherent uncertainty due to sparse observations in some ar-
eas of the attractor introduces prediction errors that cannot be modeled
in a deterministic context. In Wan and Sapsis, 2017 a method based on
Gaussian process regression (GPR) (Rasmussen, 2003; C. K. Williams et al.,
2006) was proposed for prediction and uncertainty quantification in the
reduced-order space. The technique is based on a training set that sparsely
samples the attractor. Stochastic predictions exploit the geometrical relation-
ship between the current state and the training set, assuming a Gaussian
prior over the modeled latent variables. A key advantage of GPR is that
uncertainty bounds can be analytically derived from the hyperparameters
of the framework. Moreover, in Wan and Sapsis, 2017 a Mean Stochastic
Model (MeSM) is used for under-sampled regions of the attractor to ensure
accurate modeling of the steady-state in the long-term regime. However,
the resulting inference and training have a quadratic cost in terms of the
number of data samples.

RNNs, offer a powerful method for addressing the challenges of previous
approaches in data-driven prediction of complex, chaotic dynamics whose

3.1 related work 25

application was limited to low-order problems. Unlike classical numerical
methods that aim at discretizing existing equations of complex systems,
RNN models are data-driven. RNNs keep track of a hidden state that
encodes information about the history of the system dynamics. Such data-
driven models are of great importance in applications to complex systems
where equations based on first principles may not exist, or they may be
expensive to discretize and evaluate, let alone control, in real-time. The
application of RNNs to chaotic dynamics can be challenging due to (i)
partial observability (reduced-order information of the state), and (ii) under-
resolved dynamics (insufficient training data near the attractor boundaries).

This chapter addresses these issues by proposing LSTM-RNN based
methods that exploit information of the recent history of the reduced-order
state to predict the high-dimensional dynamics. Time series data are used to
train the model while no knowledge of the underlying system equations is
required. Inspired by Taken’s theorem (Takens, 1981) an embedding space is
constructed using time-delayed versions of the reduced-order variable. The
proposed method tries to identify an approximate forecasting rule globally
for the reduced-order space. In contrast to GPR (Wan and Sapsis, 2017), the
method has a deterministic output while its training cost scales linearly
with the number of training samples, and it exhibits an O(1) inference
computational cost. Moreover, following Wan and Sapsis, 2017, the LSTM is
combined with a MeSM, to cope with attractor regions that are not captured
in the training set. In attractor regions, under-represented in the training set,
the MeSM is used to guarantee convergence to the invariant measure and
avoid exponential growth of the prediction error. The effectiveness of the
proposed hybrid method in accurate short-term prediction and capturing
the long-term behavior is demonstrated in the Lorenz 96 and the Kuramoto-
Sivashinsky equation. Finally, the method is also tested on predictions of a
prototypical climate model.

The structure of the chapter is as follows: In Section 3.2 we explain how
the LSTM can be employed for modeling and prediction of a dynamical
system, and a blended LSTM-MeSM technique is introduced. In Section 3.3
three other state-of-the-art methods, GPR, MeSM and the hybrid GPR-
MeSM scheme, are presented, and two comparison metrics are defined.
The proposed LSTM technique and its LSTM-MeSM extension are bench-
marked against GPR and GPR-MeSM in three complex, chaotic systems
in Section 3.4. In Section 3.6 we discuss the computational complexity of
training and inference in LSTM. Finally, Section 3.7 offers a summary of
the results.

26 coupling an rnn with a mean stochastic model

This chapter is based on the paper “Data-driven forecasting of high-
dimensional chaotic systems with long short-term memory networks” (P. R.
Vlachas, Byeon, et al., 2018). The computational resources were provided
by a grant from the Swiss National Supercomputing Centre (CSCS) under
project s929.

3.2 methods

This chapter considers the reduced-order problem where the state of a
dynamical system is projected in the reduced-order space. The system is
considered to be autonomous, while żt =

dzt
dt is the system state derivative

at timestep t.

3.2.1 Training the LSTM Recurrent Neural Network

Following Gers, Eck, et al., 2002, The LSTM is trained using time series data
from the system in the reduced-order space D = {z1:T , ż1:T} to predict the
reduced state derivative żt from a short history of the reduced-order state
{zt, zt−1, . . . , zt−κ2+1} consisting of κ2 past temporally consecutive states.
We approximated the derivative from the original time series using first
order forward differences. The loss that has to be minimized is defined
as The short-term history for the states before zd is not available. That is
why in total, we have T− κ2 + 1 training samples from a time series with T
samples. During training the weights of the LSTM are optimized according
to w? = arg min

w
L(D, w). The parameter κ2 is denoted as truncation layer,

and time dependencies longer than κ2 are not explicitly captured in the loss
function.

Training of this model is performed using Backpropagation through
time, truncated at layer κ2 and mini-batch optimization with the Adam
method (Kingma et al., 2014) with an adaptive learning rate (initial learning
rate η = 0.0001). The LSTM weights are initialized using the method
of Xavier (Glorot et al., 2010). Training is stopped when convergence of
the training error is detected or the maximum of 1000 epochs is reached.
During training, the loss of the model is evaluated on a separate validation
dataset to avoid overfitting. The training procedure is explained in detail
in Appendix A.1.

3.2 methods 27

An important issue is how to select the hidden state dimension dh and
how to initialize the LSTM states ht−κ2 , ct−κ2 at the truncation layer κ2. A
small dh reduces the expressive capabilities of the LSTM and deteriorates
inference performance. On the other hand, a large dh is more sensitive to
overfitting, and the computational cost of training rises. For this reason,
dh has to be tuned depending on the observed training behavior. We per-
formed a grid search and selected the optimal dh for each application. For
the truncation layer κ2, there are two alternatives, namely “stateless” and
“stateful” LSTM. In “stateless” LSTM the LSTM states at layer κ2 are initial-
ized to zero. Consequently, the LSTM can only capture dependencies up to
κ2 previous timesteps. In the second variant, the “stateful” LSTM, the state
is iteratively propagated for multiple timesteps in the future. The systems
considered exhibit chaotic behavior, and the dependencies are inherently
short-term, as the states in two timesteps that differ significantly can be
considered statistically independent. For this reason, the short temporal
dependencies can be captured without propagating the hidden state for a
long horizon. As a consequence, we consider only the “stateless” variant.
We also applied “stateful” LSTM without any significant improvement, so
we omit the results for brevity. The trained LSTM model can be used to
iterative predict the system dynamics as illustrated in Figure 3.1. This is
a solely data-driven approach, and no explicit information regarding the
form of the underlying equations is required.

The LSTM model is programmed in Python (Van Rossum et al., 1995) in
the Tensorflow (Abadi et al., 2016) library, and mapped to a single Nvidia
Tesla P100 graphics processing unit (GPU).

3.2.2 Mean Stochastic Model and Hybrid LSTM-MeSM

The MeSM is a powerful data-driven method used to quantify uncertainty
and perform forecasts in turbulent systems with high intrinsic attractor
dimensionality (A. J. Majda and Harlim, 2012; Wan and Sapsis, 2017). It is
parameterized a priori to capture global statistical information of the attrac-
tor by design, while its computational complexity is very low compared to
LSTM or GPR. The concept behind MeSM is to model each component zi of
the state z = [z1, . . . , zdz]T independently with an Ornstein-Uhlenbeck (OU)
process that captures the energy spectrum and the damping timescales of
the statistical equilibrium. The process takes the following form

dzi = cizidt + ξidWi, (3.1)

28 coupling an rnn with a mean stochastic model

ztrue1

ztrued−1

ztrued

ztrue2

ztrued

ztrue3

ztrued+1

zpredd+1

zpred2d−1

zpred2d∫

ztrued

żpredd

zpredd+1 ∫

zpredd+1

żpredd+1

zpredd+2 ∫

zpredd+2

żpredd+2 żpred2d

h0, C0

LSTM

h1, C1

LSTM

h2, C2

LSTM

hd, Cd

LSTM

Figure 3.1: Iterative prediction using the trained LSTM model. A short-term
history of the system, i. e. ztrue

1 , . . . , ztrue
d , is assumed to be known.

Initial LSTM states are h0, c0. The trained LSTM is used predict
the derivative żpred

d = Fw(ztrue
κ2 :1 , h0, c0). The state prediction zpred

κ2+1 is
obtained by integrating this derivative. This value is used for the next
prediction in an iterative fashion. After κ2 timesteps, only predicted
values are fed in the input. The short-term history is illustrated with
black arrows, while predicted values with red. In stateless LSTM, h
and c are initialized to zero before every prediction.

where ci, ξi are parameters fitted to the centered training data and Wi is a
Wiener process. In the statistical steady state the mean, energy and damping
timescale of the process are given by

µi = E[zi] = 0, Ei = E[zi(zi)∗] = − ξ2

2ci
, Ti = −

1
ci

, (3.2)

where (zi)∗ denotes the complex conjugate of zi. In order to fit the model
parameters ci, ξi we directly estimate the variance E[zi(zi)∗] from the time
series training data and the decorrelation time using

Ti =
1

E[zi(zi)∗]

ˆ ∞

0
E
[
zi(t)

(
zi(t + τ)

)∗]dτ. (3.3)

After computing these two quantities, we replace in Equation 3.2 and solve
with respect to ci and ξi. Since the MeSM is modeled a priori to mimic the
global statistical behavior of the attractor, forecasts made with MeSM can
never escape. This is not the case with LSTM and GPR, as prediction errors
accumulate and iterative forecasts escape the attractor due to the chaotic
dynamics, although short-term predictions are accurate. This problem has

3.3 benchmark and performance measures 29

been addressed with respect to GPR in Wan and Sapsis, 2017. In order to
cope effectively with this problem, we introduce a hybrid LSTM-MeSM
technique that prevents forecasts from diverging from the attractor.

The state dependent decision rule for forecasting in LSTM-MeSM is given
by

żt =




(żt)LSTM, if ptrain(zt) = ∏ ptrain

i (zi
t) > δ

(żt)MeSM, otherwise
(3.4)

where ptrain(zt) is an approximation of the probability density function
of the training dataset and δ ≈ 0.01 a constant threshold tuned based on
ptrain(zt). We approximate ptrain(zt) using a mixture of Gaussian kernels.
This hybrid architecture exploits the advantages of LSTM and MeSM. In case
there is a high probability that the state zi lies close to the training dataset
(interpolation), the LSTM having memorized the local dynamics is used
to perform inference. This ensures accurate LSTM short-term predictions.
On the other hand, close to the boundaries, the attractor is only sparsely
sampled ptrain(zi) < δ, and errors from LSTM predictions would lead
to divergence. In this case, MeSM guarantees that forecasting trajectories
remain close to the attractor, and that we converge to the statistical invariant
measure in the long term. The MeSM and the GPR are programmed in
Matlab (Higham et al., 2016).

3.3 benchmark and performance measures

The performance of the proposed LSTM based prediction mechanism is
benchmarked against the following state-of-the-art methods:

• Mean Stochastic Model (MeSM)

• Gaussian Process Regression (GPR)

• Hybrid Model (GPR-MeSM)

In order to guarantee that the prediction performance is independent
of the initial condition selected for all applications and all performance
measures considered, we report the average value of each measure for
many different initial conditions sampled independently and uniformly
from the attractor. The ground truth trajectory is obtained by integrating the
discretized reference equation from each initial condition and projecting the
states to the reduced-order space. The reference equation and the projection
method are application-dependent.

30 coupling an rnn with a mean stochastic model

From each initial condition, we generate an empirical Gaussian ensemble
of dimension Nen around the initial condition with a small variance σen.
This noise represents the uncertainty in the knowledge of the initial system
state. We forecast the evolution of the ensemble by iteratively predicting the
derivatives and integrating (deterministically for each ensemble member for
the LSTM, stochastically for GPR), and we keep track of the mean. We select
an ensemble size Nen = 50, which is the usual choice in environmental
science, e. g. weather prediction and short-term climate prediction (A.
Majda et al., 2005).

The ground truth trajectory at each time instant z is then compared with
the predicted ensemble mean z̃. As a comparison measure we use the root
mean squared error (RMSE) defined as

RMSE(zk) =

√√√√1/V
V

∑
i=1

(
zi

k − z̃ i
k

)2
, (3.5)

where index k denotes the kth component of the reduced-order state z,
i is the initial condition, and V is the total number of initial conditions.
The RMSE is computed at each time instant for each component k of the
reduced-order state, resulting in error curves that describe the evolution of
error with time. Moreover, we use the standard deviation σ of the attractor
samples in each dimension as a relative comparison measure. Assuming
that the attractor consists of samples {z1, z2, . . . , zN}, with zj ∈ Rdz , the
attractor standard deviation in dimension i ∈ {1, . . . , dz} is defined as acti =√

E[(zi − zi)2]), where zi is the mean of the samples in this dimension. If
the prediction error is bigger than this standard deviation, then a trivial
mean predictor performs better.

Moreover, we use the mean Anomaly Correlation Coefficient (ACC) (All-
gaier et al., 2012) over V initial conditions to quantify the pattern correlation
of the predicted trajectories with the ground-truth. The ACC is defined as

ACC =
1
V

V

∑
i=1

∑dz
k=1 wk

(
zi

k − zk

)(
z̃ i

k − zk

)

√
∑dz

k=1 wk

(
zi

k − zk

)2
∑dz

k=1 wk

(
z̃ i

k − zk

)2
, (3.6)

where k refers to the mode number, i refers to the initial condition, wk
are mode weights selected according to the energies of the modes after
dimensionality reduction and zk is the time average of the respective mode,
considered as reference. This score ranges from −1.0 to 1.0. If the forecast

3.4 results 31

is perfect, the score equals 1.0. The ACC coefficient is a widely used fore-
casting accuracy score in the meteorological community (Basnarkov et al.,
2012).

3.4 results

In this section, the effectiveness of the proposed method is demonstrated
with respect to three chaotic dynamical systems, exhibiting different levels
of chaos, from weakly chaotic to fully turbulent, i. e. the Lorenz 96 model,
the Kuramoto-Sivashinsky equation, and a prototypical barotropic climate
model.

3.4.1 The Lorenz 96 Model

In this section, we consider the Lorenz 96 model, introduced in Section 2.2.2.
The dimensionality of the state is set to J = 40.

Following A. Majda et al., 2005; Wan and Sapsis, 2017 we apply a shifting
and scaling to standardize the Lorenz 96 states Xj. The discrete or Dirichlet

energy is given by E = 1
2 ∑J

j=1 X2
j . In order for the scaled Lorenz 96 states

to have zero mean and unit energy we transform them using

X̃j =
Xj − X√

Ep
, dt̃ =

√
Epdt, Ep =

1
2T

J−1

∑
j=0

ˆ T0+T

T0

(Xj − X)2dt, (3.7)

where Ep is the average energy fluctuation. In this way the scaled energy
is Ẽ = 1

2 ∑J−1
j=0 X̃2

j = 1 and the scaled variables have zero mean X̃ =

1
J ∑J−1

j=0 X̃j = 0, with X the mean state. The scaled Lorenz 96 states X̃j obey
the following differential equation

dX̃j

dt̃
=

F− X
Ep

+
(X̃j+1 − X̃j−2)X− X̃j√

Ep
+ (X̃j+1 − X̃j−2)X̃j−1 (3.8)

32 coupling an rnn with a mean stochastic model

3.4.1.1 Dimensionality Reduction: Discrete Fourier Transform

Firstly, the Discrete Fourier Transform (DFT) is applied to the energy
standardized Lorenz 96 states X̃j. The Fourier coefficients X̂k ∈ C and
the inverse DFT to recover the Lorenz 96 states are given by

X̂k =
1
J

J−1

∑
j=0

X̃je−2πikj/J , X̃j =
J−1

∑
k=0

X̂ke2πikj/J . (3.9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wavenumber k

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
n

er
gy

E
k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of most energetic modes used

0

20

40

60

80

100

C
u

m
m

u
la

ti
ve

en
er

gy
%

Figure 3.2: Energy spectrum Ek and cumulative energy with respect to the num-
ber of most energetic modes used for different forcing regimes of
Lorenz 96 model. As the forcing increases, more chaoticity is intro-
duced to the system.
F = 4 ; F = 8 ; F = 16 ; 90% of the total energy

After applying the DFT to the Lorenz 96 states, we end up with a symmet-
ric energy spectrum that can be uniquely characterized by J/2 + 1 (J is con-
sidered to be an even number) coefficients X̂k for k ∈ K = {0, 1, · · · , J/2}.
In our case J = 40, thus we end up with |K| = 21 complex coefficients
X̂k ∈ C. These coefficients are referred to as the Fourier modes or simply
modes. The Fourier energy of each mode is defined as Ek = σ(X̂k)

2 =

E[(X̂k(t̃)− X̂k)(X̂k(t̃)− X̂k)
∗].

The energy spectrum of the Lorenz 96 model is plotted in Figure 3.2 for
different values of the forcing term F. The most energetic Fourier modes in
the Lorenz 96 model for different forcing regimes F ∈ {4, 6, 8, 16} are given
in Table 3.1. These modes are used in order to construct the reduced-order
phase space. We take into account only the dr = 6 modes corresponding
to the highest energies and the rest of the modes are truncated. For
the different forcing regimes F = 4, 8, 16, the six most energetic modes

3.4 results 33

Forcing Wavenumbers k Forcing Wavenumbers k

F = 4 7,10,14,9,17,16 F = 8 8,9,7,10,11,6

F = 6 8,7,9,10,11,6 F = 16 8,9,10,7,11,6

Table 3.1: Most energetic Fourier modes used in the reduced-order phase space

correspond to approximately 89%, 52% and 43.8% of the total energy, re-
spectively. The space where the reduced variables live is referred to as the
reduced-order phase space, and the most energetic modes are notated as X̂r

k
for k ∈ {1, . . . , dr}. As shown in Crommelin et al., 2004 the most energetic
modes are not necessarily the ones that capture better the dynamics of
the model. Including more modes or designing a criterion to identify the
most important modes in the reduced-order space may boost prediction
accuracy. However, here we are not interested in an optimal reduced space
representation but rather in the effectiveness of a prediction model given
this space. The truncated modes are ignored for now. Nevertheless, their
effect can be modeled stochastically as in Wan and Sapsis, 2017.

Since each Fourier mode X̂r
k is a complex number, it consists of a real part

and an imaginary part. By stacking these real and imaginary parts of the dr
truncated modes we end up with the 2 dr dimensional reduced model state

z ≡ [Re(X̂r
1), . . . , Re(X̂r

dr
), Im(X̂r

1), . . . , Im(X̂r
dr
)]T (3.10)

Assuming that Xt
j for j ∈ {0, 1, . . . , J − 1} are the Lorenz 96 states at time

instant t, the mapping Xt
j , ∀j→ z is unique and the reduced model state of

the Lorenz 96 has a specific vector value.

3.4.1.2 Training and Prediction in the Lorenz 96 Model

The reduced Lorenz 96 model states zt are considered as the true reference
states. The LSTM is trained to forecast the derivative of the reduced-order
state żt as elaborated in Section 3.2. We use a “stateless LSTM” with dh = 20
hidden units and the backpropagation truncation horizon set to κ2 = 10.

In order to obtain training data for the LSTM, we integrate the Lorenz
96 model state in Equation 2.17 starting from an initial condition using a
Runge-Kutta 4th order method with a timestep dt = 0.01 up to T = 51.
In this way a time series Xt

j , t ∈ {0, 1, · · · } is constructed. We obtain the

34 coupling an rnn with a mean stochastic model

reduced-order state time series zt, t ∈ {0, 1, · · · }, using the DFT mapping
X j

t∀j→ zt. From this time series, we discard the first 104 initial timesteps as
initial transients, ending up with a time series with Ntrain = 50000 samples.
A similar but independent process is repeated for the validation set.

3.4.1.3 Results

The trained LSTM models are used for prediction based on the iterative
procedure explained in Section 3.2. In this section, we demonstrate the
forecasting capabilities of LSTM and compare it with GPs. 100 different
initial conditions uniformly sampled from the attractor are simulated. For
each initial condition, an ensemble with size Nen = 50 is considered by
perturbing it with a normal noise with variance σen = 0.0001.

In Figures 3.3(a) to 3.3(c) we report the mean RMSE prediction error
of the most energetic mode X̂r

1 ∈ C, scaled with
√

Ep for the forcing
regimes F ∈ {6, 8, 16} for the first N = 10 timesteps (T = 0.1). In the
RMSE the complex norm ||v||2 = vv∗ is taken into account. The 10% of
the standard deviation of the attractor is also plotted for reference (10%σ).
As F increases, the system becomes more chaotic and difficult to predict.
As a consequence, the number of prediction steps that remain under the
10%σ threshold are decreased. The LSTM models extend this predictability
horizon for all forcing regimes compared to GPR and MeSM. However,
when LSTM is combined with MeSM the short-term prediction performance
is compromised. Nevertheless, hybrid LSTM-MeSM models outperform
GPR methods in short-term prediction accuracy.

In Figures 3.3(d) to 3.3(f) the RMSE error for T = 2 is plotted. The
standard deviation from the attractor σ is plotted for reference. We can
observe that both GPR and LSTM diverge, while MeSM and blended
schemes remain close to the attractor in the long term as expected.

In Figures 3.3(g) to 3.3(i), the mean ACC over 1000 initial conditions is
given. The predictability threshold of 0.6 is also plotted. After crossing this
critical threshold, the methods do not predict better than a trivial mean
predictor. For F = 4 GPR methods show inferior performance compared
to LSTM approaches as analyzed previously in the RMSE comparison.
However, for F = 8 LSTM models do not predict better than the mean after
T ≈ 0.35, while GPR shows better performance. In turn, when blended
with MeSM, the compromise in the performance for GPR-MeSM is much
bigger compared to LSTM-MeSM. The LSTM-MeSM scheme shows slightly

3.4 results 35

0 0.02 0.04 0.06 0.08 0.1
Time t

0.00

0.05

0.10

R
M

SE
 (

E p
X 7

) 10%

F = 4, wavenumber k = 7

(a)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 8

) 10%

F = 8, wavenumber k = 8

(b)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.00

0.05

0.10

0.15

R
M

SE
 (

E p
X 8

) 10%

F = 16, wavenumber k = 8

(c)

0 1 2
Time t

0.0

0.5

1.0

1.5

2.0

R
M

SE
 (

E p
X 7

)

F = 4, wavenumber k = 7

(d)

0 1 2
Time t

0.0

0.5

1.0

1.5

R
M

SE
 (

E p
X 8

)

F = 8, wavenumber k = 8

(e)

0 1 2
Time t

0

1

2

R
M

SE
 (

E p
X 8

)

F = 16, wavenumber k = 8

(f)

0 0.5 1
Time t

0.5

0.0

0.5

1.0

AC
C

F = 4

(g)

0 0.5 1
Time t

0.5

0.0

0.5

1.0

AC
C

F = 8

(h)

0 0.5 1
Time t

0.0

0.5

1.0

AC
C

F = 16

(i)

Figure 3.3: (a), (b), (c) Short-term RMSE evolution of the most energetic mode
for forcing regimes F = 4, 8, 16 respectively of the Lorenz 96 model.
(d), (e), (f) Long-term RMSE evolution. (g), (h), (i) Evolution of the
ACC coefficient. (In all plots average over 1000 initial conditions is
reported).
10% σattractor ; σattractor ; ACC = 0.6 threshold ; MeSM ;
GPR ; GPR-MeSM ; LSTM ; LSTM-MeSM

superior performance than GPR-MeSM during the entire relevant time
period (ACC > 0.6). For the fully turbulent regime F = 16, LSTM shows
comparable performance with both GPR and MeSM, and all methods
converge as chaoticity rises since the intrinsic dimensionality of the system
attractor increases and the system become inherently unpredictable.

In Figure 3.4, the evolution of the mean RMSE over 1000 initial conditions
of the wavenumbers k = 8, 9, 10, 11 of the Lorenz 96 with forcing F = 8 is
plotted. In contrast to GPR, the RMSE error of LSTM is much lower in the
moderate and low energy wavenumbers k = 9, 10, 11 compared to the most

36 coupling an rnn with a mean stochastic model

energetic mode k = 8. This difference among modes is not observed in GPR.
This can be attributed to the highly nonlinear energy transfer mechanisms
between these low-energy modes as opposed to the Gaussian and locally
linear energy transfers of the most energetic mode.

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 8

) 10%

F = 8, wavenumber k = 8

(a)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 9

)

10%

F = 8, wavenumber k = 9

(b)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 1

0)

10%

F = 8, wavenumber k = 10

(c)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100
R

M
SE

 (
E p

X 1
1)

10%

F = 8, wavenumber k = 11

(d)

Figure 3.4: RMSE prediction error evolution of four energetic modes for the
Lorenz 96 model with forcing F = 8. (a) Most energetic mode k = 8.
(b) Low energy mode k = 9. (c) Low energy mode k = 10. (d) Low
energy mode k = 11. (In all plots average over 1000 initial conditions
reported)
10% σattractor ; MeSM ; GPR ; GPR-MeSM ; LSTM ;
LSTM-MeSM

As illustrated before, the hybrid LSTM-MeSM architecture effectively
combines the accurate short-term prediction performance of LSTM with the
long-term stability of MeSM. The ratio of ensemble members modeled by
LSTM in the hybrid scheme is plotted with respect to time in Figure 3.5(a).
Starting from the initial ensemble of size 50, as the LSTM forecast might
deviate from the attractor, the MeSM is used to forecast in the hybrid
scheme. As a consequence, the ratio of ensemble members modeled by
LSTM decreases with time. In parallel with the GPR results presented
in Wan and Sapsis, 2017 and plotted in Figure 3.5(b), the slope of this
ratio curve increases with F up to time t ≈ 1.5. However, the LSTM ratio
decreases slower compared to GPR.

3.4 results 37

0 2 4
Time

20

40

60

80

100
LS

TM
 d

yn
am

ic
s

%

(a)

0 2 4
Time

20

40

60

80

100

G
PR

 d
yn

am
ic

s
%

(b)

Figure 3.5: (a) Ratio of the ensemble members evaluated using the LSTM model
over time for different Lorenz 96 forcing regimes in the hybrid LSTM-
MeSM method and (b) the same for GPR in the hybrid GPR-MeSM
method. (average over 500 initial conditions).
F = 4 ; F = 8 ; F = 16

3.4.2 Kuramoto-Sivashinsky Equation

In this Section, we consider the KS equations given in Section 2.2.1. We
impose Dirichlet and second-type boundary conditions to guarantee ergod-
icity (Blonigan and Q. Wang, 2014). The boundary and initial conditions
are given by

u(0, t) = u(L, t) =
∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=L

= 0,

u(x, 0) = u0(x).
(3.11)

In the discretized equations, Equation 2.16, we impose u0 = uD−1 = 0 and
add ghost nodes u−1 = u1, uD = uD−2 to account for the Dirichlet and
second-order boundary conditions. In our analysis, the number of nodes is
D = 513.

The spatial variable bound is held constant to L = 16 and the chaoticity
level is controlled through the negative viscosity ν, where a smaller value
leads to a system with a higher level of chaos (see Figure Figure 2.4(a)).
We consider two values, namely ν = 1/10 and ν = 1/16 to benchmark
the prediction skills of the proposed method. The discretized equation
(Equation 2.16) is integrated with a time interval dt = 0.02 up to T = 11000.
The data pointss up to T = 1000 are discarded as initial transients. Half
of the remaining data (N = 250000 samples) are used for training and the
other half for validation.

38 coupling an rnn with a mean stochastic model

3.4.2.1 Dimensionality Reduction: Singular Value Decomposition

The dimensionality of the problem is reduced using Singular Value Decom-
position (SVD). By subtracting the temporal mean U and stacking the data,
we end up with the data matrix U ∈ RN×513, where N is the number of
data samples (N = 500000 in our case). Performing SVD on U leads to

U = MΣV T , M ∈ RN×N , Σ ∈ RN×513, V ∈ R513×513, (3.12)

with Σ diagonal, with descending diagonal elements. The right singular
vectors corresponding to the dr largest singular values are the first columns
of V = [Vr, V−r]. Stacking these singular vectors yields Vr ∈ R513×dr .
Assuming that Ut ∈ R513 is a vector of the discretized values of u(x, t)
in time t, in order to get a reduced-order representation c ≡ [c1, . . . , cdr]

T

corresponding to the dr components with the highest energies (singular
values) we multiply

c = Vr
TU, c ∈ Rdr . (3.13)

The percentage of cumulative energy w. r. t. to the number of PCA modes
considered is plotted in Figure 2.4(b). Here, we pick dr = 20 (out of 513)
most energetic modes, as they explain approximately 90% of the total
energy.

The temporal average of the state of the Kuramoto-Sivashinsky equation
and the cumulative energy are plotted in Figure 3.6. As ν declines, chaoticity
in the system rises, and higher oscillations of the mean towards the Dirichlet
boundary conditions are observed in Figure 3.6, while the number of modes
needed to capture most of the energy is higher.

3.4.2.2 Results

We train “stateless” LSTM models with dh = 100 and κ2 = 50. For testing,
starting from 1000 initial conditions uniformly sampled from the attractor,
we generate a Gaussian ensemble of dimension Nen = 50 centered around
the initial condition in the original space with standard deviation of σ = 0.1.
This ensemble is propagated using the LSTM prediction models and GPR,
MeSM, and GPR-MeSM models trained as in Wan and Sapsis, 2017. The
root mean squared error between the predicted ensemble mean and the
ground-truth is plotted in Figures 3.8(a) and 3.8(b) for different values of
the parameter ν. All methods reach the invariant measure much faster for
1/ν = 16 compared to the less chaotic regime 1/ν = 10 (note the different
integration times T = 4 for 1/ν = 10, while T = 1.5 for 1/ν = 16).

3.4 results 39

0 5 10 15
x

-10

-5

0

5

10

ū

100 101 102

Number of modes used

0

20

40

60

80

100

C
u

m
u

la
ti

ve
E

n
er

gy
in

%

Figure 3.6: Temporal average U and cumulative mode (PCA) energy for different
values of ν in the Kuramoto-Sivashinsky equation.
1/ν = 10 ; 1/ν = 16 ; 1/ν = 36 ; 20 modes

In both chaotic regimes 1/ν = 10 and 1/ν = 16, the reduced-order
LSTM outperforms all other methods in the short-term before escaping
the attractor. However, in the long-term, LSTM does not stabilize and will
eventually diverge faster than GPR (see Figure 3.8(b)). Blending LSTM with
MeSM alleviates the problem, and both accurate short-term predictions
and long-term stability are attained. Moreover, the hybrid LSTM-MeSM has
better forecasting capabilities compared to GPR.

The need for blending LSTM with MeSM in the KS equation is less
imperative as the system is less chaotic than the Lorenz 96, and LSTM
methods diverge much slower while they sufficiently capture the complex
nonlinear dynamics. As the intrinsic dimensionality of the attractor rises,
LSTM diverges faster.

The mean ACC (Equation 3.6) is plotted with respect to time in Fig-
ures 3.8(c) and 3.8(d) for ν = 10 and 16 respectively. The evolution of the
ACC justifies the aforementioned analysis. The mean ACC of the trajectory
predicted with LSTM remains above the predictability threshold of 0.6 for
the highest time duration compared to other methods. This predictability
horizon is approximately 2.5 for ν = 1/10 and 0.6 for ν = 1/16, since
the chaoticity of the system rises and accurate predictions become more
challenging.

For the hybrid LSTM-MeSM, the ratio of the ensemble members that
are modeled with LSTM is plotted with respect to time in Figure 3.7(a).
The quotient drops slower for 1/ν = 10 in the long run as the intrinsic
dimensionality of the attractor is smaller, and trajectories diverge slower.

40 coupling an rnn with a mean stochastic model

However, in the beginning, the LSTM ratio is higher for 1/ν = 16 as the
MeSM drives initial conditions close to the boundary faster towards the
attractor due to the higher damping coefficients compared to the case
1/ν = 10. This explains the initial knick in the graph for 1/ν = 16. The
slow damping coefficients for 1/ν = 10 do not allow the MeSM to drive the
trajectories back to the attractor at a faster pace than the diffusion caused
by the LSTM forecasting. Compared with GPR plotted in Figure 3.7(b), the
ratio drops slower.

0.0 0.5 1.0 1.5
Time t

50

60

70

80

90

100

LS
TM

 D
yn

am
ic

s
%

(a)

0.0 0.5 1.0 1.5
Time t

50

60

70

80

90

100

G
PR

 D
yn

am
ic

s
%

(b)

Figure 3.7: (a) Ratio of LSTM-MeSM ensemble members modeled by the LSTM
dynamics for the Kuramoto-Sivashinsky (T = 1.5). (b) The same for
GPR in the hybrid GPR-MeSM. (Mean over 1000 initial conditions)
1/ν = 10 ; 1/ν = 16

3.4.3 A Barotropic Climate Model

In this section, we examine a standard barotropic climate model (Selten,
1995) originating from a realistic winter circulation. The model equations
are given by

∂ζ

∂t
= −J (ψ, ζ + f + h) + k1ζ + k2δ3ζ + ζ∗, (3.14)

where ψ is the stream function, ζ = δψ the relative vorticity, f the Cori-
olis parameter, ζ∗ a constant vorticity forcing, while k1 and k2 are the
Ekman damping and the scale-selective damping coefficient. J is the Jacobi
operator given by

J (a, b) =
(∂a

∂λ

∂B
∂µ̃
− ∂a

∂µ̃

∂B
∂λ

)
, (3.15)

where µ̃ and λ denote the sine of the geographical latitude and longitude
respectively. The equation of the barotropic model, i. e. Equation 3.14, is

3.4 results 41

0 1 2 3 4
Time t

0

10

20

30

40

50
R

M
SE

(
1)

v = 1/10

(a)

0.0 0.5 1.0 1.5
Time t

0

10

20

30

40

50

60

R
M

SE
(

1)

v = 1/16

(b)

0 1 2 3 4
Time t

1.0

0.6

0.2

-0.2

AC
C

v = 1/10

(c)

0.0 0.5 1.0 1.5
Time t

1.0

0.6

0.2

-0.2

AC
C

v = 1/16

(d)

Figure 3.8: (a), (b) RMSE evolution of the most energetic mode of the KS equation
with 1/ν = 10 and 1/ν = 16. (c), (d) ACC evolution of the most
energetic mode of the KS equation with 1/ν = 10 and 1/ν = 16. (In
all plots, average value over 1000 initial conditions is reported)
σattractor ; ACC = 0.6 threshold ; MeSM ; GPR ; GPR-
MeSM ; LSTM ; LSTM-MeSM

non-dimensionalized using the radius of the earth as unit length and the
inverse of the earth angular velocity as time unit. The non-dimensional
orography h is related to the real Northern Hemisphere orography h

′
by

h = 2sin(φ0)A0h
′
/H, where φ0 is a fixed amplitude of 45◦N, A0 is a factor

expressing the surface wind strength blowing across the orography, and
H a scale height (Selten, 1995). The stream-function ψ is expanded into a
spherical harmonics series and truncated at wavenumber 21, while modes
with an even total wavenumber are excluded, avoiding currents across the
equator and ending up with a hemispheric model with 231 degrees of
freedom.

The training data are obtained by integrating Equation 3.14 for 105 days
after an initial spin-up period of 1000 days, using a fourth-order Adams-
Bashforth integration scheme with a 45-min timestep in accordance with
Wan and Sapsis, 2017, with k1 = 15 days, while k2 is selected such that

42 coupling an rnn with a mean stochastic model

wavenumber 21 is damped at a timescale of 3 days. In this way, we end up
with a time series ζt with 104 samples. The spherical surface is discretized
into a D = 64× 32 mesh with equally spaced latitude and longitude. From
the gathered data, 90% is used for training and 10% for validation. The
mean and variance of the statistical steady state are shown in Figures 3.9(a)
and 3.9(b).

 1
2
0

o W

 6
0 o

W

 0
o

6
0

o E

 1
2
0 o

E

 180
o
W

 45
o
N

Mean

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

(a)

 1
2
0

o W

 6
0 o

W

 0
o

6
0

o E

 1
2
0 o

E

 180
o
W

 45
o
N

Variance

0

1

2

3

4

5

6

7
10

-5

(b)

1 40 80 120 160 231
Number of modes used

0

20

40

60

80

100

C
u

m
u

la
ti

ve
en

er
gy

in
%

(c)

Figure 3.9: (a) Mean of the Barotropic model at statistical steady state. (b) Vari-
ance of the Barotropic model at statistical steady state. (c) Percentage
of energy explained with respect to the modeled modes.

The dimensionality of the barotropic climate model truncated at wavenum-
ber 21 is 231. In order to reduce it, we identify Empirical Orthogonal
Functions (EOFs) φi, i ∈ {1, . . . , 231} that form an orthogonal basis of
the reduced-order space. The details of the method are described in Ap-
pendix A.2. EOF analysis has been used to identify individual realistic
climatic modes such as the Arctic Oscillation (AO), the Pacific/North Amer-
ica (PNA), and the Tropical/Northern Hemisphere (TNH) pattern known as
teleconnections (Mo et al., 1986; Thompson et al., 2000). Accurate prediction
of these modes is of high practical importance as they feature realistic
climate patterns. After projecting the state of the barotropic model to the
EOFs, we take into account only the dr coefficients corresponding to the
most energetic EOFs that form the reduced-order state y∗. Here, we set
the dimensionality of the reduced space to dr = 30, as φ30 contains only
3.65% of the energy of φ1, while the 30 most energetic modes contain
approximately 82% of the total energy, as depicted in Figure 3.9(c).

3.4.3.1 Training and Prediction

The reduced-order state that we want to predict using the LSTM are the
30 components of y. A “stateless” LSTM with dh = 140 hidden units is

3.5 sensitivity to noise 43

considered, while the truncated backpropagation horizon is set to κ2 =
10. The prototypical system is less chaotic than the KS equation and the
Lorenz 96, which enables us to use more hidden units. The reason is
that as chaoticity is decreased, trajectories sampled from the attractor
as training and validation dataset become more interconnected, and the
task is inherently easier and less prone to overfitting. In the extreme case
of a periodic system, the information would be identical. 500 points are
randomly and uniformly picked from the attractor as initial conditions for
testing. A Gaussian ensemble with small variance (σen = 0.001) along each
dimension is formed and marched using the reduced-order GPR, MeSM,
Mixed GPR-MeSM, and LSTM methods.

3.4.3.2 Results

The RMSE error of the four most energetic reduced-order space variables yi
for i ∈ {1, . . . , 4} is plotted in Figure 3.10. The LSTM takes 400− 500 hours
to reach the attractor, while GPR based methods generally take 300− 400
hours. In contrast, the MeSM reaches the attractor already after 1 hour.
This implies that the LSTM can better capture the nonlinear dynamics than
GPR. The barotropic model is much less chaotic than the Lorenz 96 model
with F = 16, where all methods show comparable prediction performance.
Blended LSTM models with MeSM are omitted here, as LSTM models only
reach the attractor standard deviation towards the end of the simulated
time, and MeSM-LSTM shows identical performance.

3.5 sensitivity to noise in the data

In this section, we evaluate the robustness of the proposed approach to noise.
For this purpose, the training data are perturbed with different noise levels.
We add Gaussian noise sampled from N(0, σnoise) where the noise standard
deviation is proportional to the attractor standard deviation σattractor of each
system, i. e. σnoise = k σattractor. We note that σattractor is computed from the
training data as the standard deviation of the samples of the reduced-order
state of the system. Different noise levels k are considered.

44 coupling an rnn with a mean stochastic model

0 100 200 300 400 500
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05
R

M
SE

 (y
1)

(a)

0 100 200 300 400 500
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

R
M

SE
 (y

2)

(b)

0 100 200 300 400 500
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

R
M

SE
 (y

3)

(c)

0 100 200 300 400 500
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

R
M

SE
 (y

4)

(d)

Figure 3.10: RMSE evolution of the four most energetic EOFs for the Barotropic
climate model, average over 500 initial conditions reported. (a) Most
energetic EOF. (b) Second most energetic EOF. (c) Third most ener-
getic EOF. (d) Fourth most energetic EOF.
σattractor ; MeSM ; GPR ; GPR-MeSM ; LSTM

3.5.1 Lorenz 96 Model

In the following, we analyze the influence of noise in the training data
for the Lorenz 96 model. In parallel with the main body of the paper, we
plot the RMSE error evolution of the most energetic mode (first row of
Figure 3.11) for short-term till T = 0.1, the same for time T = 2 (second
row of Figure 3.11) and the ACC (third row of Figure 3.11). The columns of
Figure 3.11 correspond to different chaotic regimes of the Lorenz 96 model.
For the forcing F = 4 and noise levels k ∈ {0.01, 0.2}, noise does not affect
the prediction performance of the LSTM. This can be attributed to the fact
that the attractor dimensionality is really low in this case, and the amount
of data is enough to capture the dynamics despite the noisy training data.
However, for F = 8 and F = 16, adding noise leads to slight deterioration of
the short-term prediction accuracy for the noise level k = 0.01, as illustrated
by the last two figures in the first row of Figure 3.11. As a consequence, the

3.5 sensitivity to noise 45

method can be considered robust against noise. Increasing the noise level
to k = 0.2 corresponding to a noise standard deviation equal to 20% of the
attractor standard deviation leads to deterioration in short-term prediction
performance. The deterioration in the short-term prediction performance
can be seen in the short-term RMSE error evolution of the fourth most
energetic modes for the forcing regime F = 8 plotted in Figure 3.12.

0 0.02 0.04 0.06 0.08 0.1
Time t

0.00

0.05

0.10

R
M

SE
 (

E p
X 7

) 10%

F = 4, wavenumber k = 7

(a)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 8

) 10%

F = 8, wavenumber k = 8

(b)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.00

0.05

0.10

0.15

R
M

SE
 (

E p
X 8

) 10%

F = 16, wavenumber k = 8

(c)

0 1 2
Time t

0.0

0.5

1.0

1.5

2.0

R
M

SE
 (

E p
X 7

)

F = 4, wavenumber k = 7

(d)

0 1 2
Time t

0.0

0.5

1.0

1.5

R
M

SE
 (

E p
X 8

)

F = 8, wavenumber k = 8

(e)

0 1 2
Time t

0

1

2

R
M

SE
 (

E p
X 8

)

F = 16, wavenumber k = 8

(f)

0 0.5 1
Time t

0.5

0.0

0.5

1.0

AC
C

F = 4

(g)

0 0.5 1
Time t

0.5

0.0

0.5

1.0

AC
C

F = 8

(h)

0 0.5 1
Time t

0.0

0.5

1.0

AC
C

F = 16

(i)

Figure 3.11: (a), (b), (c) Short-term RMSE evolution of the most energetic mode
for forcing regimes F = 4, 8, 16 respectively of the Lorenz 96 model.
(d), (e), (f) Long-term RMSE evolution. (g), (h), (i) Evolution of the
ACC coefficient. (In all plots average over 1000 initial conditions is
reported).
10% σattractor ; σattractor ; ACC = 0.6 threshold ;
MeSM ; GPR ;
GPR-MeSM ; LSTM k = 0o/oo ; LSTM-MeSM k = 0o/oo ;
LSTM k = 10o/oo ; LSTM-MeSM k = 10o/oo ; LSTM k =
200o/oo ;
LSTM-MeSM k = 200o/oo

46 coupling an rnn with a mean stochastic model

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 8

) 10%

F = 8, wavenumber k = 8

(a)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 9

)

10%

F = 8, wavenumber k = 9

(b)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 1

0)

10%

F = 8, wavenumber k = 10

(c)

0 0.02 0.04 0.06 0.08 0.1
Time t

0.000

0.025

0.050

0.075

0.100

R
M

SE
 (

E p
X 1

1)

10%

F = 8, wavenumber k = 11

(d)

Figure 3.12: RMSE prediction error evolution of four energetic modes for the
Lorenz 96 model with forcing F = 8. (a) Most energetic mode k = 8.
(b) Low energy mode k = 9. (c) Low energy mode k = 10. (d) Low
energy mode k = 11. (In all plots average over 1000 initial conditions
reported)
10% σattractor ; MeSM ; GPR ; GPR-MeSM ; LSTM k =
0o/oo ; LSTM-MeSM k = 0o/oo ; LSTM k = 10o/oo ; LSTM-
MeSM k = 10o/oo ; LSTM k = 200o/oo ; LSTM-MeSM k =
200o/oo

3.5.2 Kuramoto-Sivashinsky Equation

In Figure 3.13 we plot the RMSE error evolution for the most energetic
mode and the ACC of the Kuramoto-Sivashinsky equation for two dif-
ferent chaotic regimes 1/ν ∈ {10, 16}. Three different noise levels k ∈
{0.001, 0.01, 0.2} are considered. For the low chaotic regime 1/ν = 10,
predictability performance is robust against noise, as the error evolution
changes slightly with k ∈ {0.001, 0.01}. The predictability performance
deteriorates significantly only when the training data are polluted with
noise with a standard deviation bigger than 20% of the attractor standard
deviation. On the contrary, adding noise to the training data in the input
improves the predictability performance of LSTM for the chaotic regime
ν = 1/16. This can be attributed to the fact that in this chaotic regime,

3.5 sensitivity to noise 47

correlation patterns are much less prominent, and the LSTM is more prone
to overfit. As a consequence, adding noise to the input forces the neural
network to learn only robust patterns in the data that can be generalized.
Short-term prediction performance deteriorates slightly, but in the long
term, the LSTM is more robust against the accumulation of errors. This
behavior has to be further investigated in future work.

0 1 2 3 4
Time t

0

10

20

30

40

50

R
M

SE
(

1)

v = 1/10

(a)

0.0 0.5 1.0 1.5
Time t

0

10

20

30

40

50

60

R
M

SE
(

1)

v = 1/16

(b)

0 1 2 3 4
Time t

1.0

0.6

0.2

-0.2

AC
C

v = 1/10

(c)

0.0 0.5 1.0 1.5
Time t

1.0

0.6

0.2

-0.2

AC
C

v = 1/16

(d)

Figure 3.13: Training data of LSTM are perturbed with standard deviation
σnoise = k σattractor. Three different noise levels k ∈ {0.001, 0.01, 0.2}
are considered. (a), (b) RMSE evolution of the most energetic mode
of the KS equation with 1/ν = 10 and 1/ν = 16. (c), (d) ACC evolu-
tion of the most energetic mode of the KS equation with 1/ν = 10
and 1/ν = 16. (In all plots, average value over 1000 initial conditions
is reported)
σattractor ; ACC = 0.6 threshold ; MeSM ; GPR ; GPR-
MeSM ; LSTM k = 0o/oo ; LSTM k = 1o/oo ; LSTM
k = 10o/oo ; LSTM k = 200o/oo

48 coupling an rnn with a mean stochastic model

3.5.3 Barotropic Model

In Figure 3.14 we plot the RMSE error evolution for the four most en-
ergetic EOFs of the Barotropic model. Three different noise levels k ∈
{0.001, 0.01, 0.2} are considered. Only for the highest noise level is the
prediction performance deteriorated. For low noise levels, the prediction
performance can be increased (k = 0.001), as the noise may regularize
the Backpropagation procedure during training with stochastic methods.
Adding noise to the input of neural networks can be used as a practical
heuristic to increase their accuracy and can also be seen as a form of dropout
in the input layer of the LSTM. The results indicate that the prediction per-
formance of the LSTM is robust for the noise levels k ∈ {0.001, 0.01}.

0 20 40 60 80 100
Time (hours)

0.000

0.001

0.002

0.003

0.004

0.005

R
M

SE
 (y

1)

(a)

0 20 40 60 80 100
Time (hours)

0.000

0.001

0.002

0.003

0.004

0.005
R

M
SE

 (y
2)

(b)

0 20 40 60 80 100
Time (hours)

0.000

0.001

0.002

0.003

R
M

SE
 (y

3)

(c)

0 20 40 60 80 100
Time (hours)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

R
M

SE
 (y

4)

(d)

Figure 3.14: RMSE evolution of the four most energetic EOFs for the Barotropic
climate model, average over 500 initial conditions reported. Training
data are perturbed with Gaussian noise with standard deviation
σnoise = k σattractor. LSTM results for different noise levels k are
plotted. (a) Most energetic EOF. (b) Second most energetic EOF. (c)
Third most energetic EOF. (d) Fourth most energetic EOF.
GPR ; GPR-MeSM ; LSTM k = 0o/oo ; LSTM k = 1o/oo

; LSTM k = 10o/oo ; LSTM k = 200o/oo ;

3.6 computational cost of prediction 49

3.6 computational cost of prediction

The computational cost of making a single prediction can be quantified by
the number of operations (multiplications and additions) needed. In GPR
based approaches, the computational cost is of order O(N2), where N is
the number of samples used in training. For GPR methods illustrated in
the previous section N ≈ 2500. The GPR models the global dynamics by
uniformly sampling the attractor and “carries” this training dataset at each
time instant to identify the geometric relation between the input and the
training dataset (modeled with a covariance matrix metric) and make (exact
or approximate) probabilistic inference on the output.

In contrast, LSTM adjusts its parameters to reproduce the local dynamics.
As a consequence, the computational complexity of inference does not
depend on the number of samples used for training. The inference com-
plexity is roughly O(dz · κ2 · dh + κ2 · d2

h), where dz is the dimension of each
input (reduced-order state), κ2 is the number of inputs (timesteps) and dh
is the number of hidden units. This complexity is significantly smaller than
GPR, which can be translated to faster prediction. However, it is logical
that the LSTM is more prone to diverge from the attractor, as there is no
guarantee that the infrequent training samples near the attractor limits
were memorized. This remark explains the faster divergence of LSTM in
the more turbulent regimes considered in Section 3.4.

3.7 discussion

In this chapter, we proposed a data-driven method based on long short-term
memory networks for modeling and prediction in the reduced space of
chaotic dynamical systems. The LSTM uses the short-term history of the
reduced-order variable to predict the state derivative and uses it for one-
step prediction. The network is trained on time series data, and it requires
no prior knowledge of the underlying governing equations. Long-term
predictions are made by iteratively predicting one step forward using the
trained network.

The features of the proposed technique are showcased through compar-
isons with GPR and MeSM on benchmarked cases. Three applications are
considered, the Lorenz 96 model, the Kuramoto-Sivashinsky equation, and
a barotropic climate model. The chaoticity of these systems ranges from
weakly chaotic to fully turbulent, ensuring a complete simulation study.

50 coupling an rnn with a mean stochastic model

Comparison measures include the RMSE and ACC between the predicted
trajectories and trajectories of the real dynamics.

The proposed approach performs better in short-term predictions in
all cases, as the LSTM is more efficient in capturing the local dynamics
and complex interactions between the modes. However, the prediction
error accumulates as we iteratively perform predictions and, similar to
GPR, does not converge to the invariant measure. Furthermore, in the
cases of increased chaoticity, the LSTM diverges faster than GPR. This may
be attributed to the absence of certain attractor regions in the training
data, insufficient training, and the exponentially increasing prediction error
during propagation. To mitigate this effect, LSTM is combined with MeSM,
following ideas presented in Wan and Sapsis, 2017, in order to guarantee
convergence of the error to the invariant measure. Blending LSTM or
GPR with MeSM deteriorates the short-term prediction performance, but
the steady-state statistical behavior is captured. The hybrid LSTM-MeSM
exhibits a slightly superior performance than GPR-MeSM in all systems
considered in this study.

In the Kuramoto-Sivashinsky equation, LSTM can better capture local
dynamics than Lorenz 96 due to the lower intrinsic attractor dimensionality.
LSTM is more accurate than GPR in the short-term, but especially in the
chaotic regime, 1/ν = 16 forecasts of LSTM fly away from the attractor
faster. LSTM-MeSM counters this effect, and long-term forecasts converge
to the invariant measure at the expense of a compromise in the short-term
forecasting accuracy. The higher short-term forecasting accuracy of LSTM
can be attributed to the fact that it is a nonlinear approximator and can
also capture correlations between modes in the reduced space. In contrast,
GPR is a locally linear approximator modeling each mode independently,
assuming Gaussian correlations between modes in the input. LSTM and
GPR show comparable forecasting accuracy in the barotropic model, as the
intrinsic dimensionality is significantly smaller than Kuramoto-Sivashinsky
and Lorenz 96, and both methods can effectively capture the dynamics.

Possible future directions for research include modeling the low-energy
modes and interpolation errors using a stochastic component in the LSTM
to improve forecasting accuracy. Another possible research direction is to
model the attractor in the reduced space using a mixture of LSTM models,
one model for each region. The LSTM proposed in this chapter models the
attractor globally. However, different attractor regions may exhibit different
dynamic behaviors, which cannot be modeled using only one network.
Moreover, these local models can be combined with a closure scheme

3.7 discussion 51

compensating for truncation and modeling errors. This local modeling
approach may further improve prediction performance.

4
T R A I N I N G A L G O R I T H M S A N D S C A L A B I L I T Y O F
R E C U R R E N T N E U R A L N E T W O R K S F O R F O R E C A S T I N G
D Y N A M I C A L S Y S T E M S

4.1 related work

As demonstrated in Chapter 3, RNNs can be employed successfully for fore-
casting chaotic dynamical systems at their reduced-order space. Their train-
ing, however, is difficult due to the problem of vanishing gradients (Hochre-
iter, 1998). Gated architectures like LSTMs alleviate the problem. These
architectures are trained with BPTT, which can be slow in practice due to
the iterative procedure of updating the neural network’s weights. A faster
alternative that aims to surpass this problem is the RC paradigm.

RC has shown significant success in modeling the full-order space dy-
namics of high-dimensional chaotic systems. This success has sparked
the interest of theoretical researchers that proved universal approximation
properties of these models (Gonon et al., 2019; Grigoryeva et al., 2018).
In Pathak, Lu, et al., 2017; Pathak, Wikner, et al., 2018 RC is utilized to
build surrogate models for chaotic systems and compute their Lyapunov
exponents based solely on data. A scalable approach to high-dimensional
systems with local interactions is proposed in Pathak, Hunt, et al., 2018. In
this case, an ensemble of RC networks is used in parallel. Each ensemble
member is forecasting the evolution of a group of modes while all other
modes interacting with this group are fed at the network’s input. The model
takes advantage of the local interactions in the state-space to decouple the
forecasting of each mode group and improve the scalability.

Despite the rich literature on both methods, namely RNNs trained with
BPTT and RC, there are limited comparative studies of the two frameworks.
This chapter examines these two prominent machine learning algorithms
on challenging physical problems. We note that our RC implementation
also uses a recurrent neural network, but it does not train the internal
network parameters according to the RC paradigm. We consider the cases
of fully observed systems and the case of partially observed systems such
as reduced-order models of real-world problems, where typically, we do not

53

54 rnns for dynamical systems

have access to all the degrees of freedom of the dynamical system. We also
examine the modeling capabilities of the two approaches for reproducing
correct Lyapunov exponent and frequency spectra. Moreover, we include
some more recent RNN architectures, like Unitary (Arjovsky et al., 2016;
Jing et al., 2017) and Gated Recurrent Units (GRUs) (Cho et al., 2014; Chung,
Gulcehre, et al., 2014) that have shown superior performance over LSTMs for
a wide variety of language, speech signal, and polyphonic music modeling
tasks. We demonstrate that RNNs have the potential to overcome scalability
problems and be applied to high-dimensional spatio-temporal dynamics.

We are interested in the model-agnostic treatment of chaotic dynamical
systems, where the time evolution of the full state or some observable
is available, but we do not possess any knowledge about the underlying
equations. In the latter case, we examine which method is more suitable for
modeling temporal dependencies in the reduced-order space (observable)
of dynamical systems. Furthermore, we evaluate the efficiency of an ensem-
ble of RNNs in predicting the full state dynamics of a high-dimensional
dynamical system in parallel and compare it with RC. Finally, we discuss
the advantages implementation aspects, such as Random Access Memory
(RAM) requirements and training time, and limitations of each model. We
remark that the comparison in terms of time and RAM memory consump-
tion does not aim to quantify advantages/drawbacks among models but
instead provides information for the end-users of the software.

The structure of the chapter is as follows. Section 4.2 provides an in-
troduction to the tasks and an outline of the architectures and training
methods used in this chapter. Section 4.3 introduces the measures used
to compare the efficiency of the models. In Section 4.4 the networks are
compared in forecasting reduced-order dynamics in the Lorenz 96 model.
In Section 4.5, a parallel architecture leveraging local interactions in the
state-space is introduced and utilized to forecast the dynamics of the Lorenz
96 model (E. Lorenz, 1995) and the Kuramoto-Sivashinsky equation (Ku-
ramoto, 1978). In Section 4.6 the GRU and RC networks are utilized to
reproduce the Lyapunov spectrum of the Kuramoto-Sivashinsky equation.
The chapter concludes with Section 4.7.

This chapter is based on the paper “Backpropagation algorithms and
reservoir computing in recurrent neural networks for the forecasting of
complex spatio-temporal dynamics” (P. R. Vlachas, Pathak, et al., 2020). The
computational resources were provided by a grant from the Swiss National
Supercomputing Centre (CSCS) under project s929.

4.2 methods 55

4.2 methods

We consider RNNs for time series forecasting. The models are trained
on time series of an observable o ∈ Rdo sampled at a fixed rate 1/∆t,
{o1, . . . , oT}, where we eliminate ∆t from the notation for simplicity. The
models possess an internal high-dimensional hidden state denoted by
ht ∈ Rdh that enables the encoding of temporal dependencies on past state
history. Given the current observable ot, the output of each model is a
forecast õt+1 for the observable at the next time instant ot+1. This forecast
is a function of the hidden state. The general functional form of the RNN
models, given in Equation 2.2 and repeated here, is given by

ht = Fhh(ot, ht−1), õt+1 = Fho(ht), (4.1)

where Fhh is the hidden-to-hidden mapping and Fho is the hidden-to-
output mapping. All recurrent models analyzed in this chapter share this
common architecture. They differ in the realizations of Fhh and Fho and in
the way the parameters or weights of these functions are learned from data,
i.e., trained, to forecast the dynamics.

In the following, we describe the RNN cells considered in this chapter. The
LSTM was introduced in Section 2.1.4.2. All RNN models are implemented
in Python (Van Rossum et al., 1995) in the Pytorch (Paszke et al., 2019)
library, mapped to a single Nvidia Tesla P100 GPU, and executed on the
XC50 compute nodes of the Piz Daint supercomputer at the Swiss national
supercomputing centre (CSCS).

4.2.1 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) (Cho et al., 2014) was proposed as a
variation of LSTM utilizing a similar gating mechanism. Even though
GRU lacks an output gate and thus has fewer parameters, it achieves
comparable performance with LSTM in polyphonic music and speech signal
datasets (Chung, Gulcehre, et al., 2014). In the GRU cell, the functional form
of the mapping ht = F

wFhh
hh

(
ot, ht−1

)
is given by

ut = actg
(
Wu[ht−1, ot] + bu

)

rt = actg
(
Wr[ht−1, ot] + br

)

h̃t = tanh
(
Wh
[
rt � ht−1, ot

]
+ bh

)

ht = (1− ut)� ht−1 + ut � h̃t,

(4.2)

56 rnns for dynamical systems

ot

tanh
(
W ·

)

ht−1 ht

ht

W ∼







(a) RC Cell

ot

modRelu

ht−1 h ∈ Cdh ht
<

h<t

(b) Unit Cell

ot

ht−1
σ

go
t

ht

ht

ct−1 ct�

gf
t

gi
t

σ

+

tanh

�
tanh

c̃t

�

σ

(c) LSTM Cell

ot

ht−1

�

σ

rt

�

1 − ·

zt

+
ht

ht

�

tanh

h̃tσ

(d) GRU Cell

Figure 4.1: The information flow for a Reservoir Computing (RC) cell, a complex
Unitary cell (Unit), a Long Short-Term Memory (LSTM) cell and a
Gated Recurrent Unit (GRU) cell. The cells were conceptualized to
tackle the vanishing gradients problem of Elman RNNs. The cell used
in RC is the standard architecture of the Elman RNN. However, the
weights of the recurrent connections are randomly picked to satisfy
the echo state property and create a large reservoir of rich dynamics.
Only the output weights are trained (e. g. , with ridge regression).
The Unitary RNN utilizes a complex unitary matrix to ensure that
the gradients are not vanishing. LSTM and GRU cells employ gating
mechanisms that allow forgetting and storing information in process-
ing the hidden state. Ellipses and circles denote entry-wise operations,
while rectangles denote layer operations. The information flow of the
complex hidden state in the Unitary RNN is illustrated with dashed
red color, while the untrained randomly picked weights of the RC
with orange.

4.2 methods 57

where ot ∈ Rdo is the observable state provided at the input of the RNN
at time t, ut ∈ Rdh is the update gate vector, rt ∈ Rdh is the reset gate
vector, h̃t ∈ Rdh , ht ∈ Rdh is the internal hidden memory state, Wu, Wr, Wh
∈ Rdh×(dh+do) are weight matrices and bu, br, bh ∈ Rdh biases. The gating
activation actg is a sigmoid. The output õt+1 is given by the linear layer:

õt+1 = Wh,o ht, (4.3)

where Wh,o ∈ Rdo×dh . An illustration of the information flow in a GRU cell
is given in Figure 4.1(d).

4.2.2 Unitary Evolution

Unitary RNNs (Arjovsky et al., 2016; Jing et al., 2017), similar to LSTMs
and GRUs, aim to alleviate the vanishing gradients problem of plain RNNs.
Here, instead of employing sophisticated gating mechanisms, the effort is
focused on the identification of a re-parametrization of the recurrent weight
matrix, such that its spectral radius is a priori set to one. This is achieved by
optimizing the weights on the subspace of complex unitary matrices. The
architecture of the Unitary RNN is given by

ht = modReLU
(

Whht−1 + Woot

)

õt+1 = Wo Re
(
ht
)
,

(4.4)

where Wh ∈ Cdh×dh is the complex unitary recurrent weight matrix, Wo ∈
Cdh×do is the complex input weight matrix, ht ∈ Cdh is the complex state
vector, Re(·) denotes the real part of a complex number, Wo ∈ Rdh×dh is the
real output matrix, and the modified ReLU nonlinearity modReLU is given
by (

modReLU(z)
)

i
=

zi
|zi|
� ReLU(|zi|+ bi), (4.5)

where |zi| is the norm of the complex number zi. The complex unitary
matrix Wh is parametrized as a product of a diagonal matrix and multiple
rotational matrices. The reparametrization used here is the one proposed
in Jing et al., 2017. The complex input weight matrix Wo ∈ Cdh×do is initial-
ized with W re

o + j W im
o , with real matrices W re

o , W im
o ∈ Rdh×do whose values

are drawn from a random uniform distribution U [−0.01, 0.01] according
to Jing et al., 2017. An illustration of the information flow in a Unitary RNN
cell is given in Figure 4.1(b).

58 rnns for dynamical systems

︷ ︸︸ ︷κ1

︸ ︷︷ ︸
κ2

︸ ︷︷ ︸
κ3

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

ô5 ô6 ô11 ô12

L = 1
κ1

∑
t
||ôt − ot||2

︷ ︸︸ ︷

∇wL

Figure 4.2: Illustration of an unfolded RNN. Time series data o are provided
at the input of the RNN. The RNN is forecasting the evolution of
the observable at its outputs õ. The average difference (mean square
error) between κ1 iterative predictions (outputs) of the RNN õ and
the targets o from the time series data is computed every κ3 steps.
The gradient of this quantity, illustrated with red arrows, is backprop-
agated through time for κ2 previous temporal timesteps, computing
the gradients of the network parameters that are shared at each time
layer. The output of intermediate steps illustrated with dashed lines
is ignored. Stateless models initialize the hidden state before training
at a specific fragment of the sequence of size κ2 with zero (in this case
h6=̂0) and cannot capture dependencies longer than κ2. In this way,
consecutive training batches (sequence fragments) do not have to be
temporally adjacent. In stateful models, the hidden state is never set
to zero, and in order to train at a specific fragment of the sequence,
the initial hidden state has to be computed from the previously pro-
cessed fragment. In order to eliminate the overlap between fragments,
we teacher-force the network with ground-truth data for κ3 ≥ κ2
timesteps. Here, we pick κ3 = κ2 + κ1 − 1 as illustrated in the figure.

In the original paper of Jing et al., 2017 the architecture was evaluated
on a speech spectrum prediction task, a copying memory task, and a pixel
permuted handwritten numbers task, demonstrating superior performance
to LSTM either in terms of final testing accuracy or wall-clock training
speed.

4.2.3 Backpropagation Through Time

Backpropagation dates back to the works of Dreyfus, 1962; Linnainmaa,
1976; Rumelhart et al., 1986, while its extension to RNNs, Backpropagation
through time (BPTT) was presented in P. J. Werbos, 1988, 1990. A forward-

4.2 methods 59

pass of the network is required to compute its output and compare it
against the label (or target) from the training data based on an error metric
(e. g. mean squared loss). Backpropagation amounts to the computation of
the partial derivatives of this loss with respect to the network parameters
by iteratively applying the chain rule, transversing backward the network.
These derivatives are computed analytically with automatic differentiation.
Based on these partial derivatives, the network parameters are updated
using a first-order optimization method, e. g. stochastic gradient descent.

The power of BBTT lies in the fact that it can be deployed to learn
the partial derivatives of the weights of any network architecture with
differentiable activation functions, utilizing state-of-the-art automatic dif-
ferentiation software. At the same time (as the data are processed in small
fragments called batches), it scales to large datasets and networks and can
be accelerated by employing Graphics Processing Units (GPUs). These fac-
tors made backpropagation the workhorse of state-of-the-art deep learning
methods (Goodfellow et al., 2016).

In this chapter, we utilize BBTT to train the LSTM (Section 2.1.4.2),
GRU (Section 4.2.1) and Unitary (Section 4.2.2) RNNs. There are three
critical parameters of this training method that can be tuned. The first
hyperparameter κ1 is the number of forward-pass timesteps performed to
accumulate the error for backpropagation. The second parameter is the
number of previous timesteps for the backpropagation of the gradient κ2.
This is also denoted as truncation length or sequence length. This parameter
has to be large enough to capture the temporal dependencies in the data.
However, as κ2 becomes larger, training becomes much slower and may
lead to vanishing gradients. In the following, we characterize as “stateless”,
models whose hidden state before κ2 is hard-coded to zero, i.e., h−κ2 = 0.
“Stateless” models cannot learn dependencies that expand in a time horizon
larger than κ2. However, in many practical cases, “stateless” models are
widely employed, assuming that only short-term temporal dependencies
exist. In contrast, “stateful” models propagate the hidden state h−κ2 6= 0
between temporally consecutive batches. Here, we consider only “stateful”
networks.

Training “stateful” networks is challenging because the hidden state
h−κ2 has to be available from a previous batch, and the network has to be
trained to learn temporal dependencies that may span many timesteps in
the past. In order to avoid overlap between two subsequent data fragments
and compute h−κ2 for the next batch update, the network is teacher-forced
for κ3 timesteps between two consecutive weight updates. That implies

60 rnns for dynamical systems

providing ground-truth values at the input and performing forward-passing
without any backpropagation. This parameter influences the training speed,
determining how often the weights are updated. We pick κ3 = κ2 + κ1 − 1
as illustrated in Figure 4.2, and optimize κ1 as a hyperparameter.

The weights of the networks are initialized using the method of Xavier
proposed in Glorot et al., 2010. We utilize a stochastic optimization method
with an adaptive learning rate called Adam (Kingma et al., 2014) to update
the weights and biases. We add Zoneout (Krueger et al., 2017) regularization
in the recurrent weights and variational dropout (Gal et al., 2016) regular-
ization at the output weights (with the same keep probability) to both GRU
and LSTM networks to alleviate overfitting. Furthermore, following P. R.
Vlachas, Byeon, et al., 2018 we add Gaussian noise sampled from N (0, κnσ)
to the training data, where σ is the standard deviation of the data. The
noise level κn is tuned. Moreover, we also vary the number of RNN layers
by stacking residual layers (He et al., 2016) on top of each other. These
deeper architectures may improve forecasting efficiency by learning more
informative embedding at the cost of higher computing times.

In order to train the network on a data sequence of T timesteps, we pass
the whole dataset in pieces (batches) for many iterations (epochs). An epoch
is finished when the network has been trained on the whole dataset once.
At the beginning of every epoch, we sample uniformly B = 32 integers
from the set I = {1, . . . , T}, and remove them from it. Starting from these
indexes, we iteratively pass the data through the network till we reach the
last (maximum) index in I , training it with BBTT. Next, we remove all the
intermediate indexes we trained on from I . We repeat this process until
I = ∅, proclaiming the end of the epoch. The batch-size is thus B = 32.
We experimented with other batch-sizes B ∈ {8, 16, 64} without significant
improvement in the performance of the methods used in the analysis of
this chapter.

As an additional overfitting counter-measure, we use validation-based
early stopping, where 90% of the data is used for training and the rest 10%
for validation. When the validation error stops decreasing for Npatience = 20
consecutive epochs, the training round is over. We train the network for
Nrounds = 10 rounds, decreasing the learning rate geometrically by dividing
with a factor of ten at each round to avoid tuning the learning rate of the
Adam optimizer. When all rounds are finished, we pick the model with the
lowest validation error among all epochs and rounds.

Preliminary work on tuning the hyperparameters of the Adam optimiza-
tion algorithm apart from the learning rate, i. e. β1 and β2 in the original

4.2 methods 61

paper (Kingma et al., 2014), did not lead to important differences in the
results. For this reason and due to our limited computational budget, we
use the default values proposed in the paper Kingma et al., 2014 (β1 = 0.9
and β2 = 0.999).

4.2.4 Reservoir Computing

Reservoir Computing (RC) aims to alleviate the difficulty in learning the re-
current connections of RNNs and reduce their training time (Lukoševičius,
2012; Lukoševičius and Jaeger, 2009). RC relies on randomly selecting the
recurrent weights such that the hidden state captures the history of the
evolution of the observable ot and train the hidden-to-output weights. The
evolution of the hidden state depends on the random initialization of the
recurrent matrix and is driven by the input signal. The hidden state is
termed reservoir state to denote that it captures temporal features of the
observed state history. This technique has been proposed in the context of
Echo-State-Networks (ESNs) (Jaeger et al., 2004) and Liquid State Machines
with spiking neurons (LSM) (Maass et al., 2002).

We consider reservoir computing networks with Fhh given by the func-
tional form

ht = tanh
(
Wh,oot + Wh,hht−1

)
, (4.6)

where Wh,o ∈ Rdh×do , and Wh,h ∈ Rdh×dh . Other choices of RC architectures
are possible (Antonik et al., 2017; Haynes et al., 2015; Larger, Soriano,
et al., 2012; Larger, Baylón-Fuentes, et al., 2017). Following Jaeger et al.,
2004, the entries of Wh,o are uniformly sampled from [−ω, ω], where ω is
a hyperparameter. The reservoir matrix Wh,h has to be selected in a way
such that the network satisfies the “echo state property”. This property
requires all of the conditional Lyapunov exponents of the evolution of ht
conditioned on the input (observations ot) to be negative so that, for large t,
the reservoir state ht does not depend on initial conditions. For this purpose,
Wh,h is set to a large low-degree matrix, scaled appropriately to possess
a spectral radius (absolute value of the largest eigenvalue) $ whose value
is a hyperparameter adjusted so that the echo state property holds1. The
effect of the spectral radius on the predictive performance of RC is analyzed

1 Because of the nonlinearity of the tanh function, $ < 1 is not necessarily required for the echo
state property to hold true.

62 rnns for dynamical systems

in Jiang et al., 2019. Following Pathak, Hunt, et al., 2018 the output coupling
Fho is set to

õt+1 = Wo,hĥt, (4.7)

where the augmented hidden state ĥt is a dh dimensional vector such
that the ith component of ĥt is h̃i

t = hi
t for half of the reservoir nodes

and h̃i
t = (hi

t)
2 for the other half, enriching the dynamics with the square

of the hidden state in half of the nodes. This was empirically shown to
improve the forecasting efficiency of RCs in the context of dynamical
systems (Pathak, Hunt, et al., 2018). The matrix Wo,h ∈ Rdo×dh is trained
with regularized least-squares regression with Tikhonov regularization to
alleviate overfitting (Tikhonov et al., 1977; Yan et al., 2009) following the
same recipe as in Pathak, Hunt, et al., 2018. The Tikhonov regularization
η̃ is optimized as a hyperparameter. Moreover, we further regularize the
training procedure of RC by adding Gaussian noise in the training data.
This was shown to be beneficial for short-term performance and stabilizing
the RC in long-term forecasting. For this reason, we add noise sampled
from N (0, κnσ) to the training data, where σ is the standard deviation of
the data and the noise level κn a tuned hyperparameter.

4.3 comparison metrics

The predictive performance of the models depends on the selection of
model hyperparameters. For each model, we perform an extensive grid
search of optimal hyperparameters, reported in Appendix B.4. All model
evaluations are mapped to a single Nvidia Tesla P100 GPU and are executed
on the XC50 compute nodes of the Piz Daint supercomputer at the Swiss
national supercomputing centre (CSCS). In the following we quantify the
prediction accuracy of the methods in terms of the Normalized Root Mean
Squared Error (NRMSE), given by

NRMSE(õ) =

√〈 (õ− o)2

σ2

〉
, (4.8)

where õ ∈ Rdo is the forecast at a single timestep, o ∈ Rdo is the target value,
and σ ∈ Rdo is the standard deviation in time of each state component.
In Equation 4.8, the notation 〈·〉 denotes the state-space average (average of
all elements of a vector). To alleviate the dependency on the initial condition,
we report the evolution of the NRMSE over time-averaged over 100 initial
conditions randomly sampled from the attractor.

4.3 comparison metrics 63

Perhaps the most basic characterization of chaotic motion is through the
concept of Lyapunov exponents (Ott, 2002) (LE): Considering two infinitesi-
mally close initial conditions u(t = 0) and u(t = 0) + δu(t = 0), their sep-
aration |δu(t)| on average diverges exponentially in time, |δu(t)|/|δu(t =
0)| ∼ exp(Λt), as t → ∞. Note that the dimensionality of the vector dis-
placement δu(t) is that of the state-space. In general, the LE Λ depends
on the orientation (δu(t)/|δu(t)|) of the vector displacement δu(t). In the
t → ∞ limit, the number of possible values of Λ is typically equal to the
state-space dimensionality. We denote these values Λ1 ≥ Λ2 ≥ Λ3 ≥ . . .
and collectively call them the Lyapunov exponent spectrum (LS) of the
particular chaotic system. The LS will be evaluated in Section 4.6.

However, we note that a special role is played by Λ1, and only Λ1, the
largest LE. We refer to the largest LE as the Maximal Lyapunov exponent
(MLE). Chaotic motion of a bounded trajectory is defined by the condition
Λ1 > 0. Importantly, if the orientation of δu(t = 0) is chosen randomly,
the exponential rate at which the orbits separate is Λ1 with probability
one. This is because in order for any of the other exponents (Λ2, Λ3, . . .)
to be realized, δu(t = 0) must be chosen to lie on a subspace of lower
dimensionality than that of the state-space; i.e., the orientation of δu(t = 0)
must be chosen in an absolutely precise way, never realized by random
choice. Hence, the rate at which typical pairs of nearby orbits separate is Λ1,
and TΛ1 = Λ−1

1 , the “Lyapunov time”, provides a characteristic timescale
for judging the quality of predictions based on the observed prediction
error growth.

In order to obtain a single metric of the predictive performance of the
models we compute the valid prediction time (VPT) in terms of the MLE of
the system Λ1 as

VPT =
1

Λ1
arg max

t f

{t f |NRMSE(ot) < ε, ∀t ≤ t f } (4.9)

which is the largest time t f the model forecasts the dynamics with a NRMSE
error smaller than ε normalized with respect to Λ1. In the following, we set
ε = 0.5.

In order to evaluate the efficiency of the methods in capturing the long-
term statistics of the dynamical system, we evaluate the mean power spectral
density (power spectrum) of the state evolution over all i ∈ {1, . . . , do}
elements oi

t of the state (since the state ot is a vector). The power spectrum

64 rnns for dynamical systems

of the evolution of oi
t is given by PSD(f) = 20 log10

(
2 |ô(f)|

)
dB, where

ô(f) = DFT(oi
t) is the complex Fourier spectrum of the state evolution.

4.4 forecasting reduced-order observable dynamics in the

lorenz 96

The accurate long-term forecasting of the state of a deterministic chaotic
dynamical system is challenging as even a minor initial error can be propa-
gated exponentially in time due to the system dynamics even if the model
predictions are perfect. A characteristic timescale of this propagation is
given by the MLE of the system as elaborated in Section 4.3. In practice, we
are often interested in forecasting the evolution of an observable (that we
can measure and obtain data from), which does not contain the full state
information of the system. The observable dynamics are more irregular
and challenging to model and forecast because of the additional loss of
information.

Classical approaches to forecast the observable dynamics based on Takens
seminal work (Takens, 1981), rely on reconstructing the full dynamics in a
high-dimensional phase space. The state of the phase space is constructed
by stacking delayed versions of the observed state. Assume that the state of
the dynamical system is xt, but we only have access to the less informative
observable ot. The phase space state, i.e., the embedding state, is given
by zt = [ot, ot−τ , . . . , ot−(d−1)τ], where the time-lag τ and the embedding
dimension d are the embedding parameters. For d large enough, and in the
case of deterministic nonlinear dynamical chaotic systems, there is generally
a one-to-one mapping between a point in the phase space and the full state
of the system and vice versa. This implies that the dynamics of the system
are deterministically reconstructed in the phase space (Kantz et al., 1997)
and that there exists a phase space forecasting rule zt+1 = F z(zt), and thus
an observable forecasting rule õt+1 = Fo(ot, ot−τ , . . . , ot−(d−1)τ).

The recurrent architectures presented in Section 4.2 fit this framework, as
the embedding state information can be captured in the high-dimensional
hidden state ht of the networks by processing the observable time series ot,
without having to tune the embedding parameters τ and d.

In the following, we introduce a high-dimensional dynamical system, the
Lorenz 96 model, and evaluate the efficiency of the methods to forecast the
evolution of a reduced-order observable of the state of this system. Here

4.4 reduced-order observable dynamics in lorenz 96 65

the observable is not the full state of the system, and the networks need to
capture temporal dependencies to forecast the dynamics efficiently.

4.4.1 Dimensionality Reduction on the Lorenz 96 Model

Here, we consider the Lorenz 96 model introduced in Section 2.2.2. We
consider a grid-size J = 40 and two different forcing regimes, F = 8 and
F = 10. We solve Equation 2.17 starting from a random initial condition
with a Fourth Order Runge-Kutta scheme and a timestep of δt = 0.01.
We run the solver up to T = 2000 after ensuring that transient effects are
discarded (eliminating the data from the first 1000 time units). The first half
105 samples are used for training and the rest for testing. For the forecasting
test in the reduced-order space, we construct observables of dimension
do ∈ {35, 40} by performing Singular Value Decomposition (SVD) and
keeping the most energetic do components. The complete procedure is
described in Appendix B.3. The 35 most energetic modes taken into account
in the reduced-order observable explain approximately 98% of the total
energy of the system in both F ∈ {8, 10}.

As a reference timescale that characterizes the chaoticity of the system, we
use the Lyapunov time, which is the inverse of the MLE, i.e., TΛ1 = 1/Λ1.
The LS of the Lorenz 96 model is calculated using a standard technique
based on QR decomposition (Abarbanel, 2012). This leads to Λ1 ≈ 1.68 for
F = 8 and Λ1 ≈ 2.27 for F = 10.

4.4.2 Results on the Lorenz 96 Model

The evolution of the NRMSE of the model with the largest VPT of each
architecture for F ∈ {8, 10} is plotted in Figure 4.3 for two values of the
dimension of the observable do ∈ {35, 40}, where do = 40 corresponds to
full state information. Note that the observable is given by first transforming
the state to its SVD modes and then keeping the do most energetic ones.
As indicated by the slopes of the curves, models predicting the observable
containing full state information (do = 40) exhibit a slightly slower NRMSE
increase compared to models predicting in the reduced-order state, as
expected.

When the full state of the system is observed, the predictive performance
of RC is superior to that of all other models. Unitary networks diverge from
the attractor in both reduced-order and full space in both forcing regimes

66 rnns for dynamical systems

F ∈ {8, 10}. This divergence (inability to reproduce the long-term climate of
the dynamics) stems from the iterative propagation of the forecasting error.
The issue has also been demonstrated in RNNs as we saw in Chapter 3 (P. R.
Vlachas, Byeon, et al., 2018), and previous studies in RC (Lu et al., 2018;
Pathak, Wikner, et al., 2018). This is because the accuracy of the network for
long-term climate modeling depends not only on how well it approximates
the dynamics on the attractor locally but also on how it behaves near the
attractor, where we do not have data. As noted in Ref. (Lu et al., 2018),
assuming that the network has a full LS near the attractor, if any of the LEs
that correspond to infinitesimal perturbations transverse to the attractor
phase space is positive, then the predictions of the network will eventually
diverge from the attractor. Empirically, the divergence effect can also be
attributed to insufficient network size (model expressiveness) and training,
or attractor regions in the state-space that are underrepresented in the
training data (poor sampling). Even with a densely sampled attractor,
during iterative forecasting in the test data, the model is propagating its
own predictions, which might lead to a region near (but not on) the attractor
where any positive LE corresponds to infinitesimal perturbations transverse
to the attractor will cause divergence.

Here, we use 105 samples to densely capture the attractor. Still, RC suffers
from the iterative propagation of errors leading to divergence, especially in
the reduced-order forecasting scenario. In order to alleviate the problem,
a parallel scheme for RC is proposed in Pathak, Wikner, et al., 2018 that
enables training of many reservoirs locally forecasting the state. However,
this method is limited to systems with local interactions in their state-
space. In the case we discuss here, the observable obtained by singular
value decomposition does not fulfill this assumption. In many systems,
the assumption of local interaction may not hold. GRU and LSTM show
superior forecasting performance in the reduced-order scenario setting in
Lorenz 96 as depicted in Figure 4.3(a)-Figure 4.3(c). Especially in the case
of F = 10, the LSTM and GRU models are able to predict up to 2 Lyapunov
times ahead before reaching an NRMSE of ε = 1, compared to RC and
Unitary RNNs that reach this error threshold in 1 Lyapunov time. However,
it should be noted that the predictive utility of all models (considering an
error threshold of ε = 0.5) is limited to one Lyapunov time when applied
to reduced-order data and up to two Lyapunov times in the full state.

In order to analyze the sensitivity of the VPT to the hyperparameter
selection, we present violin plots in Figure 4.4, showing a smoothed kernel
density estimate of the VPT values of all tested hyperparameter sets for

4.4 reduced-order observable dynamics in lorenz 96 67

0 1 2 3 4 5
t / T 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

 N
R

M
SE

(a) Reduced-order observable (do = 35),
F = 8

0 1 2 3 4 5
t / T 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

 N
R

M
SE

(b) Full state (do = 40), F = 8

0 1 2 3 4 5
t / T 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

 N
R

M
SE

(c) Reduced-order observable (do = 35),
F = 10

0 1 2 3 4 5
t / T 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

 N
R

M
SE

(d) Full state (do = 40), F = 10

Figure 4.3: The evolution of the NRMSE error (average over 100 initial conditions)
of the model with the highest VPT for each architecture in the Lorenz
96 with F ∈ {8, 10} and do ∈ {35, 40}. Reservoir computing networks
show remarkable predictive capabilities when the full state is ob-
served, surpassing all other models (plots (b) and (d)). Predictions of
Unitary networks diverge from the attractor in all scenarios, while
iterative forecasts of RC suffer from instabilities when only partial
information of a reduced-order observable is available. In contrast,
GRU and LSTM show stable behavior and superior performance in
the reduced-order scenario (plots (a) and (c)).
RC ; GRU ; LSTM ; Unit ;

68 rnns for dynamical systems

Model

Scenario
F = 8 F = 10

do = 35 do = 40 do = 35 do = 40

MAX AVG MAX AVG MAX AVG MAX AVG

Unit 0.43 0.34 0.58 0.34 0.49 0.39 0.63 0.41

LSTM 0.74 0.37 0.97 0.45 1.17 0.47 1.73 0.66

GRU 0.98 0.37 1.34 0.55 1.22 0.43 1.59 0.71

RC 0.55 0.32 2.31 0.79 0.60 0.36 2.35 0.83

Table 4.1: Maximum and average Valid Prediction Time (VPT) over all hyper-
parameter sets averaged over 100 initial conditions sampled from the
testing data for each model.

do = 35 and do = 45 and F = 8 and F = 10. The horizontal markers denote
the maximum, average, and minimum values. Quantitative results for both
F ∈ {8, 10} are provided on Table 4.1.

In the full state scenario (do = 40) and forcing regime F = 8, RC shows a
remarkable performance with a maximum VPT ≈ 2.31, while GRU exhibits
a max VPT of ≈ 1.34. The LSTM has a max VPT of ≈ 0.97, while Unitary
RNNs show the lowest forecasting ability with a max VPT of ≈ 0.58. From
the violin plots in Figure 4.4 we notice that densities are wider at the lower
part, corresponding to many models (hyperparameter sets) having much
lower VPT than the maximum, emphasizing the importance of tuning the
hyperparameters. Similar results are obtained for the forcing regime F = 10.
One noticeable difference is that the LSTM exhibits a max VPT of ≈ 1.73,
which is higher than that of GRU, which is ≈ 1.59. Still, the VPT of RC in
the full state scenario is ≈ 2.35 which is the highest among all models.

In contrast, in the case of do = 35 where the models are forecasting on
the reduced-order space in the forcing regime F = 8, GRU is superior
to all other models with a maximum VPT ≈ 0.98 compared to LSTM
showing a max VPT ≈ 0.74. LSTM shows inferior performance to GRU,
which we speculate may be due to insufficient hyperparameter optimization.
Observing the results on F = 10 justifies our claim, as indeed both the
GRU and the LSTM show the highest VPT values of ≈ 1.22 and ≈ 1.17
respectively. In both scenarios F = 8 and F = 10, when forecasting the
reduced-order space do = 35, RC shows inferior performance compared to
both GRU and LSTM networks with max VPT≈ 0.55 for F = 8 and ≈ 0.60
for F = 10. Last but not least, we observe that Unitary RNNs show the
lowest forecasting ability among all models. This may not be attributed

4.4 reduced-order observable dynamics in lorenz 96 69

35 40
Reduced order dimension

0.0

0.5

1.0

1.5

2.0

V
PT

(a) Forcing regime F = 8

35 40
Reduced order dimension

0.0

0.5

1.0

1.5

2.0

V
PT

(b) Forcing regime F = 10

Figure 4.4: Violin plot showing the probability density of the VPT of all hyperpa-
rameter sets for each model for observable dimension do = 35 and
do = 40 and forcing regimes (a) F = 8 and (b) F = 10 in the Lorenz
96.
RC ; GRU ; LSTM ; Unit ;

to the expressiveness of Unitary networks but rather to the difficulty in
identifying the right hyperparameters (Greff et al., 2016). In Figure 4.4 we
observe that the violin plots in the reduced-order state are much thinner
at the top compared to the ones in the full state. This implies that the
identification of hyperparameter sets that achieve a high VPT in the reduced-
order space is more challenging. This emphasizes that forecasting the
reduced-order state is a more difficult task than the full state scenario.

In the following, we evaluate the ability of the trained networks to forecast
the long-term statistics of the dynamical system. In almost all scenarios and
all cases considered here, forecasts of Unitary RNN networks fail to remain
close to the attractor and diverge. For this reason, we omit the results on
these networks. This divergence effect that appears in both Unitary and RC
networks is quantified in Appendix B.5.

We quantify the long-term behavior in terms of the power spectrum of the
predicted dynamics and its difference with the true spectrum of the testing
data. In Figure 4.5, we plot the power spectrum of the predicted dynamics
from the model (hyperparameter set) with the lowest power spectrum error
for each architecture for do ∈ {35, 40} and F ∈ {8, 10} against the ground-
truth spectrum computed from the testing data (dashed black line). In the
full state scenario in both forcing regimes (Figure 4.5(b), Figure 4.5(d)),
all models match the true statistics in the test dataset, as the predicted
power spectra match the ground-truth. These results imply that RC is a

70 rnns for dynamical systems

powerful predictive tool in the full-order state scenario, as RC models both
capture the long-term statistics and have the highest VPT among all other
models considered in this analysis. However, in the case of a reduced-order
observable, the RC cannot match the statistics. In contrast, GRU and LSTM
networks achieve superior forecasting performance while matching the
long-term statistics, even in this challenging setting of a chaotic system with
reduced-order information.

In Appendix B.7, we provide an analysis of the robustness of the results
presented here with respect to the hyperparameters of BPTT.

An important aspect of machine learning models is their scalability to
high-dimensional systems and their training time and memory utiliza-
tion requirements. Large memory requirements and high training times
might hinder the application of the models in challenging scenarios, like
high-performance applications in climate forecasting (Kurth et al., 2018).
In Figure 4.6(a) and Figure 4.6(d), we present a Pareto front of the VPT
with respect to the CPU RAM memory utilized to train the models with
the highest VPT for each architecture for an input dimensions of do = 35
(reduced-order) and do = 40 (full dimension) respectively. Figure 4.6(b) and
Figure 4.6(e), show the corresponding Pareto fronts of the VPT with respect
to the training time. In the case of the full state-space (do = 40), the RC
can achieve superior VPT with smaller memory usage and vastly shorter
training time than the other methods. However, in the case of reduced-order
information (do = 35), the BPTT algorithms (GRU and LSTM) are superior
to the RC even when the latter is provided with one order of magnitude
more memory.

Because the RNN models are learning the recurrent connections, they
can reach higher VPT when forecasting in the reduced-order space without
the need for large models. In contrast, in RC the maximum reservoir
size (imposed by computer memory limitations) may not be sufficient to
capture the dynamics of high-dimensional systems with reduced-order
information and non-local interactions. We argue that this is the reason
why the RC models do not reach the performance of GRU/LSTM trained
with backpropagation (see Figure 4.6(a)).

At the same time, letting memory limitations aside, training of RC models
requires the solution of a linear system of equations HW T

out = Y , with
H ∈ RdN×dh , W T

out ∈ Rdh×do and Y ∈ RdN×do (see Appendix B.1). The
Moore-Penrose method of solving this system scales cubically with the
reservoir size as it requires the inversion of a matrix with dimensions
dh × dh. We also tried an approximate iterative method termed LSQR based

4.4 reduced-order observable dynamics in lorenz 96 71

0 10 20 30 40 50
Frequency [Hz]

60

50

40

30

20

10

0

10

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(a) do = 35, F = 8.

0 10 20 30 40 50
Frequency [Hz]

60

50

40

30

20

10

0

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(b) do = 40, F = 8.

0 10 20 30 40 50
Frequency [Hz]

50

40

30

20

10

0

10

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(c) do = 35, F = 10.

0 10 20 30 40 50
Frequency [Hz]

50

40

30

20

10

0

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(d) do = 40, F = 10.

Figure 4.5: Predicted power spectrum of the RC, GRU, and LSTM networks with
the lowest spectrum error forecasting the dynamics of an observable
consisting of the SVD modes of the Lorenz 96 model with forcing
F ∈ {8, 10}. The observable consists of the do = 35 most energetic
modes or full state information do = 40. (a) Reduced-order observable
at forcing F = 8. (b) Full state observable at forcing F = 8. (c) Reduced-
order observable at forcing F = 10. (d) Full state observable at forcing
F = 10.
RC ; GRU ; LSTM ; Groundtruth ;

72 rnns for dynamical systems

on diagonalization without any significant influence on the training time.
In contrast, the training time of an RNN is tough to estimate a priori, as the
convergence of the training method depends on initialization and various
other hyperparameters and is not necessarily dependent on the size. That
is why we observe a more significant variation of the training time of RNN
models. Similar results are obtained for F = 10, the interested reader is
referred to Appendix B.6.

In the following, we evaluate to which extent the trained models overfit
the training data. For this reason, we measure the VPT in the training
dataset and plot it against the VPT in the test dataset for every model
we trained. This plot provides insight into the generalization error of the
models. The results are shown in Figure 4.6(c), and Figure 4.6(f) for do = 35
and do = 40. Ideally, a model architecture that effectively guards against
overfitting exhibits a low generalization error and should be represented
by a plot point close to the identity line (zero generalization error). As
the expressive power of a model increases, the model may fit better to the
training data, but bigger models are more prone to memorizing the training
dataset and overfitting (high generalization error). Such models would be
represented by points on the right side of the plot. In the reduced-order
scenario, GRU and LSTM models lie closer to the identity line than RC
models, exhibiting lower generalization errors. This is due to the validation-
based early stopping routine utilized in the RNNs that guards effectively
against overfitting.

We may alleviate the overfitting in RC by tuning the Tikhonov regulariza-
tion parameter (η̃). However, this requires rerunning the training for every
other combination of hyperparameters. For the four tested values η̃ ∈ {10−3,
10−4, 10−5, 10−6} of the Tikhonov regularization parameter the RC models
tend to exhibit higher generalization error compared to the RNNs trained
with BBTT. We also tested more values η̃ ∈ {10−1, 10−2, 10−3, 10−4, 10−5,
10−6, 10−7, 10−8}, while keeping fixed the other hyperparameters, without
any observable differences in the results.

However, in the full-order scenario, the RC models achieve superior
forecasting accuracy and generalization ability as clearly depicted in Fig-
ure 4.6(f). Especially the additional regularization of the training procedure
introduced by adding Gaussian noise in the data was decisive to achieve
this result.

An example of an iterative forecast in the test dataset, is illustrated in Fig-
ure 4.8 and Figure 4.7 for F = 8 and do ∈ {35, 40}. Unitary networks suffer
from the propagation of forecasting error, and eventually, their forecasts

4.4 reduced-order observable dynamics in lorenz 96 73

0.2 0.4 0.6 0.8
RAM Memory [MB] 1e4

0.0

0.2

0.4

0.6

0.8

1.0

V
PT

(a) VPT w. r. t. RAM mem-
ory for do = 35.

0 2 4 6
Training time [s] 1e4

0.0

0.2

0.4

0.6

0.8

1.0

V
PT

(b) VPT w. r. t. the total
training time for do =
35.

0.0 0.5 1.0 1.5 2.0
VPT in train dataset

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V
PT

 in
 te

st
 d

at
as

et

(c) VPT in test data w. r. t.
VPT in the train data
for do = 35.

0.2 0.4 0.6 0.8
RAM Memory [MB] 1e4

0.0

0.5

1.0

1.5

2.0

V
PT

(d) VPT w. r. t. RAM mem-
ory for do = 40.

0.0 0.2 0.4 0.6 0.8
Training time [s] 1e5

0.0

0.5

1.0

1.5

2.0

V
PT

(e) VPT w. r. t. the total
training time for do =
40.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
VPT in train dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
PT

 in
 te

st
 d

at
as

et

(f) VPT in test data w. r. t.
VPT in the train data for
do = 40.

Figure 4.6: Forecasting results on the dynamics of an observable consisting of the
SVD modes of the Lorenz 96 model with F = 8 and state dimension
40. The observable consists of the do ∈ {35, 40} most energetic modes.
(a), (d) Valid prediction time (VPT) plotted w. r. t. the required RAM
memory for dimension do ∈ {35, 40}. (b), (e) VPT plotted w. r. t. total
training time for dimension do ∈ {35, 40}. (c), (f) VPT measured from
100 initial conditions sampled from the test data plotted against the
VPT from 100 initial conditions sampled from the training data for
each model for do ∈ {35, 40}. In the reduced-order space (do = 35),
RCs tend to overfit easier compared to GRUs/LSTMs that utilize
validation-based early stopping. In the full-order space (do = 40) ,
RCs demonstrate excellent generalization ability and high forecasting
accuracy.
RC (or) ; GRU (or) ; LSTM (or) ; Unit (or) ;
Ideal ;

74 rnns for dynamical systems

Figure 4.7: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 10 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the true (target) evolution and
the associated NRSE contours for the full state observable do = 40.
The evolution of the component average normalized RMSE (NRMSE)
is plotted to facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

diverge from the attractor. Forecasts in the case of an observable dimension
do = 40 diverge slower as the dynamics are deterministic. In contrast, fore-
casting the reduced-order observable with do = 35 is challenging due to
both (1) sensitivity to initial condition and (2) incomplete state information
that requires the capturing of temporal dependencies. RC models achieve
superior forecasting accuracy in the full-state setting compared to all other
models. In the challenging reduced-order scenario, LSTM and GRU net-
works demonstrate a stable behavior in iterative prediction and reproduce
the long-term statistics of the attractor (attractor climate). In contrast, in the
reduced-order scenario, iterative predictions of RC frequently diverge from
the attractor. An analysis of the robustness of the predictive performance
and generalization ability of the networks as a function of the noise in the
data is provided in Appendix B.2.

4.4 reduced-order observable dynamics in lorenz 96 75

Figure 4.8: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 10 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the true (target) evolution
and the associated NRSE contours for the reduced-order observable
do = 35. The evolution of the component average normalized RMSE
(NRMSE) is plotted to facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

76 rnns for dynamical systems

ot+1{

ot {

RNNi−1 RNNi RNNi+1 RNNi+2

G︷ ︸︸ ︷

︸ ︷︷ ︸
G

︸ ︷︷ ︸
I

︸ ︷︷ ︸
I

︸ ︷︷ ︸
do

Figure 4.9: Illustration of the parallel architecture for a group size of G = 2
and an interaction length of I = 1. The network consists of multiple
RNNs with different parameters. Each RNN is trained to forecast the
evolution of G elements of the observable. Additional information
of I elements from each neighboring network (left and right) are
provided as additional input to capture local correlations.

4.5 parallel forecasting leveraging local interactions

In spatially extended dynamical systems, the state-space (e. g. , vorticity,
velocity field, etc.) is high-dimensional (or even infinite-dimensional) since
an adequately fine grid is needed to resolve the relevant spatio-temporal
scales of the dynamics. Even though RC and RNNs can be utilized for mod-
eling and forecasting of these systems in the short-term, the RC and RNN
methods described in Section 4.2 do not scale efficiently with the input
dimension, i.e., as the dimensionality of the observable ot ∈ Rdo increases.
Two limiting factors are the required time and RAM memory to train the
model. As do increases, the size dh of the reservoir network required to
predict the system using only a single reservoir rises. This implies higher
training times and more computational resources (RAM memory), which
render the problem intractable for large values of do. The same applies to
RNNs. More limiting factors arise by taking the process of identification of
optimal model hyperparameters into account since loading, storing, and
processing a vast number of large models can be computationally infeasible.
However, these scaling problems for large systems can be alleviated in
case the system is characterized by local state interactions or translationally
invariant dynamics. In the first case, as shown in Figure 4.9 the modeling
and forecasting task can be parallelized by employing multiple individ-
ually trained networks forecasting locally in parallel exploiting the local

4.5 parallel forecasting leveraging local interactions 77

interactions, while, if translation invariance also applies, the individual
parallel networks can be identical and training of only one will be sufficient.
This parallelization concept is utilized in RC in Parlitz et al., 2000; Pathak,
Hunt, et al., 2018. The idea dates back to local delay coordinates (Parlitz
et al., 2000). The model shares ideas from convolutional RNN architec-
tures (Sainath et al., 2015; Shi, Z. Chen, et al., 2015) designed to capture
local features that are translationally invariant in image and video process-
ing tasks. In this section, we extend this parallelization scheme to RNNs
and compare the efficiency of parallel RNNs and RCs in forecasting the
state dynamics of the Lorenz 96 model and Kuramoto-Sivashinsky equation
discretized in a fine grid.

4.5.1 Parallel Architecture

Assume that the observable is ot ∈ Rdo and each element of the observable
is denoted by oi

t ∈ R, ∀i ∈ {1, . . . , do}. In the case of local interactions, the
evolution of each element is affected by its spatially neighboring grid points.
The elements oi are split into Ng groups, each of which consisting of G
spatially neighboring elements such that do = GNg. The parallel model
employs Ng RNNs, each of which is utilized to predict a spatially local
region of the system observable indicated by the G group elements oi. Each
of the Ng RNNs receives G inputs oi from the elements i it forecasts in
addition to I inputs from neighboring elements on the left and on the right,
where I is the interaction length. An example with G = 2 and I = 1 is
illustrated in Figure 4.9.

During the training process, the networks can be trained independently.
However, for long-term forecasting, a communication protocol has to be
utilized as each network requires the predictions of neighboring networks
to infer. In the case of a homogeneous system, where the dynamics are
translation invariant, the training process can be drastically reduced by
utilizing one single RNN and training it on data from all groups. The
weights of this RNN are then copied to all other members of the network.
In the following, we assume that we have no knowledge of the underlying
data generating mechanism and its properties, so we assume the data is not
homogeneous.

The elements of the parallel architecture are trained independently, while
the Message Passing Interface (MPI) (L. Dalcín et al., 2008; L. D. Dalcín

78 rnns for dynamical systems

et al., 2011; D. W. Walker et al., 1996) communication protocol is utilized for
communicating the elements of the interaction for long-term forecasting.

4.5.2 Results on the Lorenz 96 Model

In this section, we employ the parallel architecture to forecast the state
dynamics of the Lorenz 96 model explained in Section 4.4.1 with a state
dimension of do = 40. Note that in contrast to Section 4.4.2, we do not
construct an observable and then forecast the reduced-order dynamics.
Instead, we leverage the local interactions in the state-space and employ an
ensemble of networks forecasting the local dynamics.

Instead of a single RNN model forecasting the do = 40 dimensional global
state (composed of the values of the state in the 40 grid nodes), we consider
Ng = 20 separate RNN models, each forecasting the evolution of a G = 2
dimensional local state (composed of the values of the state in 2 grid nodes).
In order to forecast the evolution of the local state, we take into account its
interaction with I = 4 grid nodes on its left and on its right. The group size
of the parallel models is thus G = 2, while the interaction length is I = 4. As
a consequence, each model receives at its input an 2I + G = 10 dimensional
state and forecasts the evolution of a local state composed from 2 grid
nodes. The size of the hidden state in RC is dh ∈ {1000, 3000, 6000, 12000}.
Smaller networks of size dh ∈ {100, 250, 500} are selected for GRU and
LSTM. The rest of the hyperparameters are given in Appendix B.4. Results
for Unitary networks are omitted, as the identification of hyperparameters
leading to stable iterative forecasting was computationally heavy and all
trained models led to unstable systems that diverged after a few iterations.

In Figure 4.10(a), we plot the VPT time of the RC and the BPTT networks.
We find that RNNs trained by BPTT achieve comparable predictions with
RC, albeit using a much smaller number of hidden nodes (between 100

and 500 for BPTT vs. 6000 to 12000 for RC). Finally, we remark that RC
with 3000 and 6000 nodes have slightly lower VPT than GRU and LSTM
but require significantly lower training times as shown in Figure 4.10(c). At
the same time, using 12000 nodes for RC implies high RAM requirements,
more than 3 GB per rank, as depicted in Figure 4.10(b).

As elaborated in Section 4.4.2 and depicted in Figure 4.3(a), the VPT
reached by large nonparallelized models that are forecasting the 40 SVD
modes of the system is approximately 1.4. We also verified that the non-
parallelized models of Section 4.4.1 when forecasting the 40 dimensional

4.5 parallel forecasting leveraging local interactions 79

0 1 2 3 4
VPT

LSTM-500
LSTM-250
LSTM-100

GRU-500
GRU-250
GRU-100
RC-12000
RC-6000
RC-3000
RC-1000

(a) Valid prediction time in the test
dataset

0 1 2 3
Average RAM memory consumption [MB]1e3

LSTM-500
LSTM-250
LSTM-100

GRU-500
GRU-250
GRU-100
RC-12000

RC-6000
RC-3000
RC-1000

(b) Average RAM memory require-
ment

0.0 0.5 1.0 1.5 2.0 2.5
Training time [s] ×104

LSTM-500

LSTM-250

LSTM-100

GRU-500

GRU-250

GRU-100

RC-12000

RC-6000

RC-3000

RC-1000

(c) Training time

Figure 4.10: (a) Valid prediction time (VPT), (b) CPU memory utilization and
(c) total training time of RNN parallel architectures with group size
G = 2 and an interaction length I = 4 forecasting the dynamics of
Lorenz 96 with state dimension do = 40 (full state). GRU and LSTM
results do not depend significantly on network size. RC with 3000 or
6000 nodes have slightly lower VPT but require much less training
time. Increasing RC size to more than 12000 nodes was not feasible
due to memory requirements.

state containing local interactions instead of the 40 modes of SVD, reach the
same predictive performance. Consequently, as expected, the VPT remains
the same whether we are forecasting the state or the SVD modes as the
system is deterministic. By exploiting the local interactions and employing
the parallel networks, the VPT is increased from ≈ 1.4 to ≈ 3.9 as shown
in Figure 4.10(a). The NRMSE error of the best performing hyperparam-
eters is given in Figure 4.11(a). All models can reproduce the climate as
the reconstructed power spectrum plotted in Figure 4.11(b) matches the
true one. An example of an iterative prediction with LSTM, GRU, and RC
models starting from an initial condition in the test dataset is provided
in Figure 4.12.

80 rnns for dynamical systems

0 2 4 6 8 10

t / TΛ1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
A

ve
ra

ge
N

R
M

S
E

(a) NRMSE error evolution

0 10 20 30 40 50
Frequency [Hz]

60

50

40

30

20

10

0

10

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(b) Power spectrum

Figure 4.11: (a) The evolution of the NRMSE error (averaged over 100 initial
conditions) of different parallel models in the Lorenz 96 with state
dimension do = 40. (b) The reconstructed power spectrum. All
models accurately capture the power spectrum. RCs with dh ∈
{6000, 12000} nodes are needed to match the predictive performance
of an LSTM with 100 nodes.
RC-1000 ; RC-6000 ; RC-12000 ; GRU-500 ; LSTM-
100 ; Groundtruth ;

4.5.3 The Kuramoto-Sivashinsky Equation

Here, we consider the KS model given in Section 2.2.1. We consider periodic
boundary conditions u(0, t) = u(L, t). In the following, we select ν = 1, L =
200, δt = 0.25 and a grid of do = 512 nodes. We consider the discretized
KS equation (Equation 2.16) with periodic boundary conditions and solve
it using the fourth-order method for stiff PDEs introduced in Kassam et
al., 2005 up to T = 6 · 104. This corresponds to 24 · 104 samples. The first
4 · 104 samples are truncated to avoid initial transients. The remaining
data are divided into a training and a testing dataset of 105 samples each.
The observable is considered to be the do = 512 dimensional state. The
Lyapunov time TΛ1 of the system (see Section 4.3) is utilized as a reference
timescale. We approximate it with the method of Pathak (Pathak, Hunt,
et al., 2018) for L = 200 and it is found to be TΛ1 ≈ 0.094.

4.5.4 Results on the Kuramoto-Sivashinsky Equation

In this section, we present the results of the parallel models in the Kuramoto-
Sivashinsky equation. The full system state is used as an observable, i.e.,

4.5 parallel forecasting leveraging local interactions 81

Figure 4.12: Contour plots of a spatio-temporal forecast in the testing dataset
with parallel GRU, LSTM, and RC networks along with the ground-
truth (target) evolution and the associated NRSE contours in the
Lorenz 96 model with the full state as an observable do = 40. The
evolution of the component average normalized RMSE (NRMSE) is
plotted to facilitate comparison.
RC-1000 ; RC-12000 ; GRU-500 ; LSTM-100 ;

82 rnns for dynamical systems

do = 512. The group size of the parallel models is set to G = 8, while the in-
teraction length is I = 8. The total number of groups is Ng = 64. Each mem-
ber forecasts the evolution of 8 state components, receiving at the input 24
components in total. The size of the reservoir in RC is dh ∈ {500, 1000, 3000}.
For GRU and LSTM networks we vary dh ∈ {100, 250, 500}. The rest of
the hyperparameters are given in Appendix B.4. Results on Unitary net-
works are omitted, as predictions of Unitary networks diverge after a few
timesteps in the iterative forecasting procedure.

The results are summed up in the bar plots in Figure 4.13. In Fig-
ure 4.13(a), we plot the VPT time of the models. LSTM models reach
VPTs of ≈ 4, while GRU show an inferior predictive performance with
VPTs of ≈ 3.5. An RC with dh = 500 reaches a VPT of ≈ 3.2, and an RC
with 1000 modes reaches the VPT of LSTM models with a VPT of ≈ 3.9.
Increasing the reservoir capacity of the RC to dh = 3000 leads to a model
exhibiting a VPT of ≈ 4.8. In this case, the large RC model shows slightly
superior performance to GRU/LSTM. The low performance of GRU models
can be attributed to the fact that in the parallel setting, the probability that
any RNN may converge to bad local minima rises, with a detrimental effect
on the total predictive performance of the parallel ensemble. In the case of
spatially translational invariant systems, we could alleviate this problem by
using one single network. Still, training the single network to data from all
spatial locations would be expensive.

As depicted in Figure 4.13, the reservoir size of 3000 is enough for RC to
reach and surpass the predictive performance of RNNs utilizing a similar
amount of RAM memory and a much lower amount of training time as
illustrated in Figure 4.13(b).

The evolution of the NRMSE is given in Figure 4.14(a). The predictive
performance of a small LSTM network with 80 hidden units matches that
of a large RC with 1000 hidden units. In Figure 4.14(b), the power spectrum
of the predicted state dynamics of each model is plotted along with the
true spectrum of the equations. The three models successfully captured the
statistics of the system, as we observe a very good match. An example of
an iterative prediction with LSTM, GRU, and RC models starting from an
initial condition in the test dataset is provided in Figure 4.15.

4.5 parallel forecasting leveraging local interactions 83

0 1 2 3 4
VPT

LSTM-120
LSTM-100

LSTM-80
GRU-120
GRU-100

GRU-80
RC-3000
RC-1000

RC-500

(a) Valid prediction time in the test
dataset

0.0 0.5 1.0 1.5 2.0 2.5
Training time [s] ×104

LSTM-120

LSTM-100

LSTM-80

GRU-120

GRU-100

GRU-80

RC-3000

RC-1000

RC-500

(b) Training time

0.0 0.5 1.0 1.5
Average RAM memory consumption [MB]1e3

LSTM-120
LSTM-100

LSTM-80
GRU-120
GRU-100

GRU-80
RC-3000
RC-1000

RC-500

(c) Average RAM memory require-
ment

Figure 4.13: (a) Valid prediction time (VPT), (b) total training time, and (c) CPU
memory utilization of parallel RNN architectures with group size
G = 8 and an interaction length I = 8 forecasting the dynamics of
Kuramoto-Sivashinsky equation with state dimension do = 512.

0 2 4 6 8 10

t / TΛ1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
ve

ra
ge

N
R

M
S

E

(a) NRMSE error evolution

0.0 0.5 1.0 1.5 2.0
Frequency [Hz]

60

50

40

30

20

10

Po
w

er
 S

pe
ct

ru
m

 [d
B

]

(b) Power spectrum

Figure 4.14: (a) The evolution of the NRMSE error (averaged over 100 initial
conditions) of different parallel models in the Kuramoto-Sivashinsky
equation with state dimension do = 512. (b) The power spectrum.
All models capture the statistics of the system.
RC-500 ; RC-1000 ; RC-3000 ; GRU-80 ; LSTM-80

; Groundtruth ;

84 rnns for dynamical systems

Figure 4.15: Contour plots of a spatio-temporal forecast starting from an initial
condition in the testing dataset with parallel GRU, LSTM, and RC
networks along with the ground-truth (target) evolution and the
associated NRSE contours in the Kuramoto-Sivashinsky equation
with the full state as an observable do = 512. The component av-
erage normalized RMSE (NRMSE) evolution is plotted to facilitate
comparison.
RC-1000 ; RC-3000 ; GRU-80 ; LSTM-80 ;
Groundtruth ;

4.6 lyapunov spectrum calculation in ks 85

4.6 calculation of lyapunov spectrum

The recurrent models utilized in this study can be used as surrogate models
to calculate the LS of a dynamical system relying only on experimental
time series data. The LEs characterize the rate of separation if positive (or
convergence if negative) of trajectories that are initialized infinitesimally
close in the phase space. They can provide an estimate of the attractor
dimension according to the Kaplan-Yorke formula (Kaplan et al., 1979).
Early efforts to solve the challenging problem of data-driven LE identi-
fication led to local approaches (Sano et al., 1985; Wolf et al., 1985) that
are computationally inexpensive at the cost of requiring a large amount of
data. Other approaches fit a global model to the data (Maus et al., 2013)
and calculate the LS using the Jacobian algorithm. These approaches were
applied to low-order systems.

A recent machine learning approach utilizes deep convolutional neural
networks for LE and chaos identification, without estimation of the dynam-
ics (Makarenko, 2018). An RC-RNN approach capable of uncovering the
whole LE spectrum in high-dimensional dynamical systems is proposed
in Pathak, Hunt, et al., 2018. The method is based on the training of a
surrogate RC model to forecast the evolution of the state dynamics and the
calculation of the LS of the hidden state of this surrogate model. The RC
method demonstrates excellent agreement for all positive LEs and many
of the negative exponents for the KS equation with L = 60 (Pathak, Hunt,
et al., 2018), alleviating the problem of spurious LEs of delay coordinate
embeddings (Dechert et al., 1996). We build on top of this work and demon-
strate that a GRU trained with BPTT can reconstruct the LS accurately with
lower error for all positive LEs at the cost of higher training times.

The LS of the KS equation is computed by solving the KS equations in
the Fourier space with a fourth-order time-stepping method (Kassam et al.,
2005) and utilizing a QR decomposition approach as in Pathak, Hunt, et al.,
2018. The LS of the RNN and RC surrogate models is computed based
on the Jacobian of the hidden state dynamics along a reference trajectory,
while Gram-Schmidt orthonormalization is utilized to alleviate numerical
divergence. We employ a GRU over an LSTM cell due to the fact that the
latter has two coupled hidden states, rendering the computation of the
LS mathematically more involved and computationally more expensive.
The trained RNN model with GRU cell is used as a surrogate to compute

86 rnns for dynamical systems

the full LS of the Kuramoto-Sivashinsky equation. Recall that the RNN
dynamics are given by

ht = Fhh(ot, ht−1)

ot+1 = Fho(ht),
(4.10)

where Fhh is the hidden-to-hidden and Fho is the hidden-to-output map-
ping, o ∈ Rdo is an observable of the state, and ht ∈ Rdh is the hidden state
of the RNN. All RNN models considered here share this common architec-
ture. They only differ in the forms of Fho and Fhh. More importantly, the
output mapping is linear, i.e.,

ot+1 = Fho(ht) = Wh,o ht. (4.11)

The LEs are calculated based on the Jacobian J = dht
dht−1

of the hidden state
dynamics along the trajectory. In the following we compute the Jacobian
using Equation 4.10. By writing down the equations for two consecutive
timesteps, we get

Timestep t− 1 : ht−1 = Fhh(ot−1, ht−2) (4.12)

ot = Fho(ht−1) = Woht−1 (4.13)

Timestep t : ht = Fhh(ot, ht−1). (4.14)

The partial Jacobians needed to compute the total Jacobian are:

∂Fhh
∂o

= Jhh
o ∈ Rdh×do (4.15)

∂Fhh
∂h

= Jhh
h ∈ Rdh×dh (4.16)

∂Fho
∂h

= Joh
h ∈ Rdo×dh . (4.17)

In total we can write:

dht

dht−1
=

dFhh(ot, ht−1)

dht−1
=

∂Fhh(ot, ht−1)

∂ot

∂ot

∂ht−1
+

∂Fhh(ot, ht−1)

∂ht−1
=⇒

(4.18)

dht

dht−1
=

∂Fhh(ot, ht−1)

∂ot

∂Fho(ht−1)

∂ht−1
+

∂Fhh(ot, ht−1)

∂ht−1
=⇒ (4.19)

dht

dht−1
= Jhh

o

∣∣∣∣
(ot ,ht−1)︸ ︷︷ ︸

evaluated at t

· Joh
h

∣∣∣∣
ht−1

+

︸ ︷︷ ︸
evaluated at t-1

Jhh
h

∣∣∣∣
(ot ,ht−1)︸ ︷︷ ︸

evaluated at t

(4.20)

4.6 lyapunov spectrum calculation in ks 87

A product of this Jacobian along the orbit δ is developed and iteratively
orthonormalized every Tn steps using the Gram-Schmidt method to avoid
numerical divergence and keep the columns of the matrix R independent.
We check the convergence criterion by tracking the estimated LE values
every Tc timesteps. The input provided to the algorithm is a short time
series of length Twarm to initialize the RNN and warm-up the hidden state
õ1:Tw+1 (where the tilde denotes experimental or simulation data), the
length of this warm-up time series Twarm, the number of the LE to calculate
N, the maximum time to unroll the RNN T, a normalization time Tn and
an additional threshold ε used as an additional termination criterion. The
function ColumnSum(·) computes the sum of each column of a matrix, i.e.,
sum(·, axis = 1). This method can be applied directly to RNNs with one
hidden state like RC or GRUs. An adaptation to the LSTM is left for future
research. The pseudocode of the algorithm to calculate the LEs of the RNN
is given in Algorithm 1.

The identified maximum LE is Λ1 ≈ 0.08844. Here, a large RC with dh =
9000 nodes is employed for LS calculation in the Kuramoto-Sivashinsky
equation with parameter L = 60 and D = 128 grid points as in Pathak,
Hunt, et al., 2018. The largest LE identified in this case is Λ1 ≈ 0.08378,
leading to a relative error of 5.3%. In order to evaluate the efficiency of
RNNs, we utilize a large GRU with dh = 2000 hidden units. An iterative
RNN roll-out of N = 104 total timesteps was needed to achieve convergence
of the spectrum. The largest LE identified by the GRU is Λ1 ≈ 0.0849
reducing the error to ≈ 4%. Both surrogate models identify the correct
Kaplan-Yorke dimension KY ≈ 15, which is the largest LE such that ∑i Λi >
0.

The first 26 LEs computed the GRU, RC as well as using the true equations
of the Kuramoto-Sivashinsky are plotted in Figure 4.16. We observe a good
match between the positive LEs by both GRU and RC surrogates. The
positive LEs are characteristic of chaotic behavior. However, the zero LEs Λ7
and Λ8 cannot be captured either with RC or with RNN surrogates. This is
also observed in RC in Pathak, Hunt, et al., 2018, and apparently, the GRU
surrogate does not alleviate the problem. In Figure 4.16(b), we augment the
RC and the GRU spectrum with these two additional exponents to illustrate
that there is an excellent agreement between the true LE and the augmented
LS identified by the surrogate models. The relative and absolute errors in
the spectrum calculation are illustrated in Figure 4.17. After augmenting
with the two zero LE, we get a mean absolute error of 0.012 for RC and
0.008 for GRU. The mean relative error is 0.23 for RC and 0.22 for GRU.

88 rnns for dynamical systems

Algorithm 1 Algorithm to calculate LS from trained RNN model
procedure LE_RNN(õ1:Tw+1, Tw, N, T, Tn, ε)

Initialize h0 ← 0.
for t = 1 : Tw do . Warming-up the hidden state

ht ← Fhh(õt, ht−1)
end for
h0 ← hTw , o1 ← õTw+1
Pick random orthonormal matrix δ ∈ Rdh×NLE .
T̃ ← T/Tn
Initialize R̃← 0 ∈ RN×T̃ .
lprev, l ← 0 ∈ RN . Initializing the N LE to zero.
J0 ← ∇hFho(h0).
for t = 1 : T do . Evolve the RNN dynamics

ht ← Fhh(ot, ht−1)
ot+1 ← Fho(ht)
J1 ← ∇hFhh(ot+1, ht). . Calculating the partial Jacobians
J2 ← ∇oFhh(ot+1, ht).
J ← J1 + J2 · J0. . Calculating the total Jacobian
δ← J · δ . Evolving the deviation vectors δ
if mod (t, Tnorm) = 0 then . Re-orthonormalizing

Q, R← QR(δ)
δ← Q[:, : N]
R̃[:, t/Tnorm]← log(diag(R[: N, : N]))
if mod (t, Tc) = 0 then . Checking convergence criterion

l ← Real(ColumnSum(R̃))/(t ∗ δt)
l ← sort(l)
d← |l − lprev|2
if d < ε then

break
end if

end if
end if
J0 ← ∇hFho(ht).

end for
return l . Return estimated Lyapunov exponents

end procedure

4.6 lyapunov spectrum calculation in ks 89

0 5 10 15 20 25 30
k

�0.6

�0.4

�0.2

0.0

0.2

⇤k

4 6 8 10 12
�0.08

0.00

0.08

(a) Lyapunov spectrum.

0 5 10 15 20 25 30
k

�0.6

�0.4

�0.2

0.0

0.2

⇤k

4 6 8 10 12
�0.08

0.00

0.08

(b) Lyapunov spectrum augmented
with Λ7, Λ8 set to zero.

Figure 4.16: (a) Estimated Lyapunov exponents Λk of the KS equation with
L = 60. The true Lyapunov exponents are illustrated with green
crosses, red circles are calculated with the RC surrogate, and the blue
rectangles with GRU. In (b), we augment the computed spectrums
with the two zero Lyapunov exponents Λ7, Λ8. Inset plots zoom in
the zero-crossing regions.
True ; RC ; GRU ;

In conclusion, GRU in par with RC networks can be used to replicate the
chaotic behavior of a reference system and calculate the LS accurately.

90 rnns for dynamical systems

5 10 15 20 25
k

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
b

so
lu

te
E

rr
or
|Λ̃

k
−

Λ
k
|

RC

GRU

(a) Absolute error

5 10 15 20 25
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
R

el
at

iv
e

E
rr

or
|(Λ̃

k
−

Λ
k
)/

Λ
k
| RC

GRU

(b) Relative error

Figure 4.17: (a) Absolute and (b) Relative error of the LS of the KS equation with
L = 60. The LS identified using the GRU shows a better agreement
with the spectrum identified by the Kuramoto-Sivashinsky equa-
tions.

4.7 discussion 91

4.7 discussion

In this chapter, we employed several variants of recurrent neural networks
and reservoir computing to forecast the dynamics of chaotic systems. We
present a comparative study based on their efficiency in capturing temporal
dependencies, evaluate how they scale to systems with high-dimensional
state-space, and how to guard against overfitting. Finally, we highlight the
advantages and limitations of these methods and elucidate their applicabil-
ity to forecasting spatio-temporal dynamics.

We considered three different types of RNN cells that alleviate the well-
known vanishing and exploding gradient problem in backpropagation
through time training (BPTT), namely LSTM, GRU, and Unitary cells. We
benchmarked these networks against reservoir computing with random
hidden-to-hidden connection weights, whose training procedure amounts
to least-square regression on the output weights.

The efficiency of the models in capturing temporal dependencies in the
reduced-order state-space is evaluated on the Lorenz 96 model in two
different forcing regimes F = {8, 10}, by constructing a reduced-order
observable using Singular Value Decomposition (SVD) and keeping the
most energetic modes. Even though this forecasting task is challenging
due to (1) chaotic dynamics and (2) reduced-order information, LSTM and
GRU show superior forecasting ability to RC utilizing similar amounts
of memory at the cost of higher training times. GRU and LSTM models
demonstrate stable behavior in the iterative forecasting procedure in the
sense that the forecasting error usually does not diverge, in stark contrast
to RC and Unitary forecasts. Large RC models tend to overfit easier than
LSTM/GRU models, as the latter utilize validation-based early stopping
and regularization techniques (e. g. , Zoneout, Dropout) that guard against
overfitting that are not directly applicable to RC. Validation in RC amounts
to tuning an additional hyperparameter, the Tikhonov regularization. How-
ever, RC shows excellent forecasting efficiency when the full state of the
system is observed, outperforming all other models by a wide margin while
reproducing the frequency spectrum of the underlying dynamics.

RNNs and RC both suffer from scalability problems in high-dimensional
systems, as the required hidden state size dh to capture the high-dimensional
dynamics can become prohibitively large, especially concerning the compu-
tational expense of training. In order to scale the models to high-dimensional
systems, we employ a parallelization scheme that exploits the local interac-
tions in the state of a dynamical system. As a reference, we consider the

92 rnns for dynamical systems

Lorenz 96 model and the Kuramoto-Sivashinsky equation, and we train
parallel RC, GRU, and LSTM models of various sizes. Iterative forecasting
with parallel Unitary models diverged after a few timesteps in both sys-
tems. Parallel GRU, LSTM, and RC networks reproduced the long-term
attractor climate and the power spectrum of the state of the Lorenz 96 and
the Kuramoto-Sivashinsky equation matched with the predicted ones.

In the Lorenz 96 and the Kuramoto-Sivashinsky equation, the parallel
LSTM and GRU models exhibited similar predictive performance compared
to the parallel RC. The memory requirements of the models are comparable.
RC networks require large reservoirs with 1000− 6000 nodes per member
to reach the predictive performance of parallel GRU/LSTM with a few
hundred nodes, but their training time is significantly lower.

Last but not least, we evaluated and compared the efficiency of GRU and
RC networks in capturing the LS of the KS equation. The positive LEs are
captured accurately by both RC and GRU. Both networks cannot reproduce
two zero LEs Λ7 and Λ8. When these two are discarded from the spectrum,
GRU and RC networks show comparable accuracy in terms of relative and
absolute error of the LS.

5
S C H E D U L E D AU T O R E G R E S S I V E B A C K P R O PA G AT I O N
T H R O U G H T I M E F O R L O N G - T E R M F O R E C A S T I N G

As we demonstrate in Chapter 4, and indicated also in other recent works (Geneva
et al., 2020; Pathak, Hunt, et al., 2018; Pathak, Lu, et al., 2017; P. R. Vlachas,
Byeon, et al., 2018; P. R. Vlachas, Pathak, et al., 2020; Wan, P. Vlachas, et al.,
2018), in the deterministic setting, RNNs are powerful approximators for
modeling and forecasting of high-dimensional chaotic spatio-temporal dy-
namics. Moreover, RNNs extended with Convolutional Neural Networks
(CNNs), either in the form of Convolutional RNN (ConvRNN) architec-
tures (Shi, Z. Chen, et al., 2015) or coupled Convolutional Autoencoder RNN
architectures (CNN-RNN) (Wiewel et al., 2019) can model high-dimensional
spatio-temporal data, i. e. fluid flows or image data, where models based
on equations are expensive or not available. The importance of long-term
prediction of fluid flows is paramount for various practical cases from
prediction of extreme events (Blonigan, Farazmand, et al., 2019), traffic
management (Y. Li et al., 2017), surrogate modeling (Wiewel et al., 2019), to
typhoon alert systems, and climate and precipitation forecasting (Kumar
et al., 2020; Rasp et al., 2020; Shi, Z. Chen, et al., 2015; Shi, Z. Gao, et al.,
2017). A recent literature survey on long-term spatio-temporal forecasting
is given in Shi and Yeung, 2018. In this chapter, we develop a training
procedure for RNNs to improve their predictive accuracy in the long term.
The procedure can be applied in both ConvRNNs, and CNN-RNNs.

5.1 related work

The workhorse of most deep learning algorithms is Backpropagation (BP) (Le-
Cun, 1985; Parker, 1985; Rumelhart et al., 1986; P. Werbos, 1974). Backpropa-
gation amounts to three steps: forward-pass, backward-pass, and the update
step. In the forward-pass, the network’s output is computed given the input
data. Given the network’s output, the loss is calculated based on the devia-
tion between the output of the network and its target, encoding the goal. In
the backward pass, the gradient of the loss with respect to the parameters
of the network is calculated by iteratively applying the chain rule starting

93

94 scheduled autoregressive bptt

from the network’s output to the input. The gradient is finally used in the
update step to alter the network’s weights towards minimizing the loss
based on an optimization algorithm (e. g. gradient descent). BP identifies
each neuron’s contribution to the network’s overall performance (credit
assignment problem) and then updates its value towards achieving the goal
encoded in the minimized loss function.

In problems handling sequential or temporal data, RNNs are employed
to spare computational resources considering the sequential aspect of the
tasks. Backpropagation through time (BPTT) (Elman, 1990; P. J. Werbos,
1988, 1990) is the extension of BP to RNNs and temporal tasks. The use of
BPTT has been widespread from Reinforcement Learning (Bakker, 2002),
natural language and signal processing (Oord, Dieleman, et al., 2016), image
processing (Gregor, Danihelka, Graves, et al., 2015), speech recognition (Ah-
mad et al., 2004), to forecasting (P. R. Vlachas, Byeon, et al., 2018), and its
employment has been decisive to solve many forms of complex temporal
credit assignment problems (Gers, Schraudolph, et al., 2002; Lillicrap et al.,
2019). Video prediction has been a central research focus of the computer
vision community recently (Castrejon et al., 2019; Fragkiadaki et al., 2015;
Mathieu et al., 2015; Oh et al., 2015; Srivastava et al., 2015; J. Walker et al.,
2014), where BPTT is utilized usually in a probabilistic context, e. g. varia-
tional RNNs (Castrejon et al., 2019; Chung, Kastner, et al., 2015).

In most applications, RNNs are trained with BPTT in the so-called
“teacher-forcing” mode (Sutskever, 2013) (BPTT-TF), where sequences from
the training dataset are provided in the input of the RNN, and the network
is trained to minimize the one step ahead forecasting error. In our work,
we argue that the gradient of the weights computed during training with
BPTT-TF is biased towards one step ahead predictions. To make matters
worse, the training loss is defined over the probability distribution of the
training data. However, in the autoregressive testing phase, the probability
distribution of the testing data might be very different, as the network was
never trained on its own predictions. This discrepancy is, in general, known
as exposure bias (Schmidt, 2019).

In the context of natural language processing (NLP), where probabilistic
RNNs are employed, alternatives to BPTT-TF have been proposed to handle
the exposure bias problem (Bowman et al., 2015; Norouzi et al., 2016; Ran-
zato et al., 2015; Sangiorgio et al., 2020; Sutskever, 2013). These works aim
to remedy this discrepancy by replacing, masking or perturbing ground-
truth context in “teacher-forcing” mode by samples of the distribution at
the output of the network. Other notable works in the natural language

5.1 related work 95

processing (NLP) literature propose alternatives to alleviate the pitfalls of
BPTT-TF at the expense of limited temporal memory by deep autoregressive
models (Gregor, Danihelka, A. Mnih, et al., 2014; Oord, Dieleman, et al.,
2016; Oord, Kalchbrenner, et al., 2016; Vaswani et al., 2017) without hidden
memory states, discussed in Miller et al., 2018. Closer to the method pre-
sented in this chapter, a scheduled sampling approach is considered in S.
Bengio et al., 2015. However, the gradient is not backpropagated through
the predicted outputs.

In this chapter, we propose an auxiliary loss that considers the iterative
forecasting (autoregressive) error, debiasing the gradient by altering the
computational graph of BPTT. A scheduled approach is considered, where
the standard one step ahead prediction loss is minimized at early training
epochs, while the loss is gradually switching to the autoregressive version
at later stages. The procedure is termed Scheduled Autoregressive BPTT
(BPTT-SA), while the loss is referred to as autoregressive loss.

We illustrate the merits of BPTT-SA in deterministic spatio-temporal
prediction with RNNs and benchmark against standard BPTT and the
schedule sampling approach of S. Bengio et al., 2015. Note that BPTT-TF
is minimizing the one step ahead prediction error and is therefore biased
towards short-term forecasting. In contrast, the autoregressive loss is biased
towards the long-term. The two objectives can be contradicting, and even
for a linear prediction model, training a new model might be a satisfactory
strategy (J.-L. Lin et al., 1994). We demonstrate that the proposed BPTT-
SA manages to conciliate the two objectives of short-term accuracy and
long-term accuracy more effectively compared to the scheduled sampling
approach of S. Bengio et al., 2015 in the viscous flow past a cylinder in a
channel, at no extra training cost, alleviating the iterative propagation of
the error, and improving long-term prediction. We find that the merits of
BPTT-SA are negligible in low-dimensional time series prediction, where
we considered forecasting of the Mackey-Glass equation and the Darwin
sea level temperature time series dataset (see Appendix C.2).

This chapter is based on the paper “Scheduled Autoregressive Back-
propagation Through Time for Robust Long-Term Spatiotemporal Forecast-
ing” (P. R. Vlachas and Koumoutsakos, in preparation).

96 scheduled autoregressive bptt

5.2 methods

Here, we assume that the RNN is processing an input stream {o0, . . . , oT}.
The input stream is composed of the state o ∈ Rdz . The recurrent mapping
of the RNN, as introduced in Equation 2.2 and repeated here for clarity (with
a slightly different notation for t), is given by ht+1 = Fhh

(
ot, ht

)
. Under the

condition of linear activation functions (no nonlinearity in the RNN cell),
or considering a linearization around a fixpoint, we may decompose the
hidden-to-hidden mapping into two contributions, one from the previous
hidden state Hh, and one from the current state Ho, i.e.

ht+1 = Fhh
(
ot, ht

)
=⇒

ht+1 ≈ Hh
(
ht
)
+Ho

(
ot
) (5.1)

where in order to simplify notation, the dependency of the mappings on
the weights is omitted. The proposed method does not depend on this
decomposition assumption, and its merits, illustrated in multiple appli-
cations later in this chapter, are valid independent of this analysis. This
decomposition, and the following analysis, is serving us for the purpose of
providing intuition about the merits of the proposed method.

In most scenarios, when the RNNs are trained for prediction of some state,
the output is a prediction of the state at the next timestep ot+1. The output
at the next timestep is computed based on the hidden-to-output mapping
ot+1 = Fho

(
ht+1

)
(see Equation 2.2). Both GRUs (Chung, Gulcehre, et al.,

2014) and LSTMs (Hochreiter and Schmidhuber, 1997) can be framed under
this unifying lens. In the following, to simplify notation, the mappings
are considered as operators applied to other vectors or operators with the
symbolism ◦, i.e.

ht+1 = Hh ◦ ht +Ho ◦ ot, (5.2)

and
ot+1 = Fho ◦ ht+1. (5.3)

5.2.1 Truncated Backpropagation Through Time

Provided data from a stream {õ0, . . . , õT}, RNNs are usually trained with
truncated BPTT to learn to forecast the next value of the stream given some
short history of size κ2 (truncation length). The process was explained in pre-
vious chapters but is repeated here for completeness. The RNN is unfolded

5.2 methods 97

over κ2 steps. The data from a history of length κ2, i. e. {õt−κ2+1, . . . , õt}
are provided to the inputs of the unfolded RNN. This is usually called
“teacher-forcing” of the RNN, as ground-truth values are provided in the
input. A loss is formulated based on the output of the RNN at step κ2
and the target. For prediction purposes, the target is the stream value at
the next timestep õt+1. The loss can be written as L

(
ot+1, õt+1

)
. The loss

measures the difference between the RNN prediction ot+1 and the target
value õt+1. A possible selection of the loss can be the mean squared error
(MSE) loss, i.e. L

(
ot+1, õt+1

)
= ||ot+1− õt+1||22. The loss is a function of the

input stream {õt−κ2+1, . . . , õt, õt+1}, the initialization of the hidden state
h̃t−κ2+1, and the weights of the RNN (omitted here for brevity). In order
to see this dependency, we evaluate the output of the unfolded RNN, i.e
ot+1 = Fho

(
ht+1

)
= Fho ◦ ht+1. By reformulating the expression for the

output ot+1 iteratively applying Equation 5.2 for κ2 times (unrolling the
RNN functional form, see Equation C.1 in Appendix C.1.1), we get

ot+1 = Fho ◦ ht+1 = Fho ◦ (Hh)
κ
2 ◦ ht−κ2+1 +Fho ◦

κ2−1

∑
k=0

(Hh)
k ◦ Ho ◦ ot−k.

(5.4)
In classical truncated BPTT, Equation 5.4 is evaluated by “teacher-forcing”
the RNN with input stream data {õt−κ2+1, . . . , õt}, and an initialization of
the hidden state h̃t−κ2+1 at the point where the gradient flow is truncated.
The hidden state at the gradient truncation step can be set from the previous
batch (“stateful” RNN) or set to zero in “stateless” RNNs. Here, the “stateful”
RNN case is considered. Thus, the functional form of the output ot+1
computed by unrolling the RNN and “teacher-forcing” is given by:

ot+1 = Fho ◦ (Hh)
κ
2 ◦ h̃t−κ2+1 +Fho ◦

κ2−1

∑
k=0

(Hh)
k ◦ Ho ◦ õt−k

= TF
(

h̃t−κ2+1,︸ ︷︷ ︸
initial hidden state

õt−κ2+1, . . . , õt︸ ︷︷ ︸
input stream

)
.

(5.5)

A schematic view of the computational graph of BPTT-TF and the backward
flow of the gradient is illustrated in Figure 5.1.

5.2.2 Autoregressive Backpropagation Through Time

Here, we introduce a different variant of BPTT, i. e. the autoregressive
scenario. In Autoregressive BPTT, the network is not teacher-forced. The

98 scheduled autoregressive bptt

h̃t−L+1

z̃t−L+1

ht−L+2

Z(h)

zt−L+2

z̃t−2 z̃t−1 z̃t

zt+1

ht+1htht−1

Z(h)

zt−1

Z(h) Z(h)

zt

R(z, h) R(z, h) R(z, h) R(z, h)

L = 1
L

t+1

∑
k=t−L+2

|zk − z̃k |2
2

z̃t−L+2 z̃t−1 z̃t z̃t+1

∇WL

(a) BBTT-TF

h̃t−L+1

z̃t−L+1

ht−L+2

Z(h)

zt−L+2 zt+1

ht+1htht−1

Z(h)

zt−1

Z(h) Z(h)

zt

R(z, h) R(z, h) R(z, h) R(z, h)

L = 1
L

t+1

∑
k=t−L+2

|zk − z̃k |2
2

z̃t+1

∇WL

(b) BPTT-A

h̃t−L+1

z̃t−L+1

ht−L+2

Z(h)

zt+1

ht+1htht−1

Z(h)

zt−1

Z(h) Z(h)

zt

R(z, h) R(z, h) R(z, h) R(z, h)

P ∼ Bern (p)

z̃t−1

Pt−1 = 0 Pt = 1

L = 1
L

t+1

∑
k=t−L+2

|zk − z̃k |2
2

z̃t+1z̃t−1

(c) BPTT-SA

Figure 5.1: (a) Graph of the forward-pass and backward gradient flow of the
BPTT with Teacher Forcing (BPTT-TF). Data input and target values
are illustrated with green color, the forward-pass of the network with
black colors, while the backward gradient pass with red. (b) In Au-
toregressive BPTT (BPTT-A) the output is propagated through the
network, and only the data input at the first timestep is used. (c) In
Scheduled Autoregressive BPTT (BPTT-SA) the behavior depends on
the autoregressive probability p parametrizing a Bernoulli distribu-
tion.

output of the network ot = Fhoht at the previous timestep is used, instead
of the data value õt. The functional form of the output ot+1 computed by

5.3 results 99

unrolling the RNN and iteratively feeding the previous output is given by
(elaborate derivation in Equation C.2 in Appendix C.1.2):

ot+1 = Fho ◦ ht+1 = Fho ◦
(
Hh +Ho ◦ Fho

)κ2−1 ◦
(
Hh ◦ ht−κ2+1 +Ho ◦ ot−κ2+1

)

(5.6)
In contrast to Equation 5.4, the output in Equation 5.6 is a function of
the recursive operator (Hh +Ho ◦ Fho)

κ
2 that includes the operator Fho.

In Equation 5.4, only the Hh operator is recursive. We argue that the
inclusion of the hidden-to-output mapping in the recursive operator during
training is vital to regularize the weights and avoid instabilities in long-term
prediction, especially in long-term spatio-temporal forecasting, where the
operator Fho can be a large CNN.

In Autoregressive BPTT, the data used to compute the output ot+1 is the
initial hidden state h̃t−κ2+1 and the initial input õt−κ2+1, i.e.

ot+1 = Fho ◦
(
Hh +Ho ◦ Fho

)κ2−1 ◦
(
Hh ◦ h̃t−κ2+1 +Ho ◦ õt−κ2+1

)

= IF
(

h̃t−κ2+1,︸ ︷︷ ︸
initial state

õt−κ2+1︸ ︷︷ ︸
initial input

)
. (5.7)

A schematic view of Autoregressive BPTT (BPTT-A) is given in Figure 5.1(b).
Here, we consider a scheduled approach, BPTT-SA, inspired by S. Bengio
et al., 2015.

In Scheduled Autoregressive BPTT (BPTT-SA) the behavior depends on
the iterative forecasting probability p parametrizing a Bernoulli distribution.
At each timestep, we decide on BPTT-TF or BPTT-A based on a sample
from this distribution (coin-flip). The validation loss is computed for p = 1
(equivalent to BPTT-A). This ensures that the validation loss according
to which we pick the optimal model is the autoregressive loss. During
training, p follows an inverse sigmoid schedule for the training loss. At
initial training epochs, p is close to zero, and the model is trained with the
standard BPTT loss (equivalent to BPTT-TF). As training progresses, p is
gradually increased till it reaches p→ 1 towards the final training epochs,
leading to BPTT-A. The schedule is depicted in Figure 5.2 for a training
procedure of 2000 epochs in total.

5.3 results

In the following, we compare the proposed BPTT-SA with standard BPTT-
TF and the method proposed in S. Bengio et al., 2015 which is equivalent

100 scheduled autoregressive bptt

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e
fo

re
ca

st
in

g
p
ro

p
ab

ili
ty

train

val

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e
fo

re
ca

st
in

g
p
ro

p
ab

ili
ty

train

val

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e
fo

re
ca

st
in

g
p
ro

p
ab

ili
ty

train

val

Figure 5.2: Schedule of iterative forecasting probability p for training (

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e
fo

re
ca

st
in

g
p

ro
p

ab
ili

ty

train

val

)
and validation loss (

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e
fo

re
ca

st
in

g
p

ro
p

ab
ili

ty

train

val).

to BPTT-SA without backpropagating the gradient. The latter is denoted
BPTT-SS (scheduled sampling). All models are programmed in Python (Van
Rossum et al., 1995) in the Pytorch (Paszke et al., 2019) library, and mapped
to a single Nvidia Tesla P100 GPU. In all experiments, the models are trained
with the Adam (Kingma et al., 2014) optimizer and validation-based early
stopping.

5.3.1 The Mackey-Glass Equation

We evaluate the effectiveness of BPTT-SA in the Mackey-Glass (MG) chaotic
time series, which is frequently used as a challenging benchmark problem
for prediction methods due to its chaotic nature (Gers, Eck, et al., 2002;
Voelker et al., 2019). The time series is generated by the delay differential
equation

dx
dt

=
α x(t− τ)

1 + xn(t− τ)
− βx(t). (5.8)

We consider the parameter setting α = 0.2, β = 0.1, c = 10, and τ = 17.

The maximum Lyapunov exponent, calculated with the method in P. R.
Vlachas, Pathak, et al., 2020 is Λ1 ≈ 8.9 · 10−3, leading to a Lyapunov time of
TΛ1 = 112 time units. We integrate Equation 5.8 with a fourth order Runge-
Kutta scheme with δt = 0.1 up to T = 2 · 105. The data are subsampled after
integration to ∆t = 1.0. 32 sequences of 1120 timesteps each (10 Lyapunov

5.3 results 101

times) are generated for training. A validation set of the same size is
considered for validation. The remaining data are considered for testing. In
order to test the proposed algorithm in the autoregressive setting, 100 initial
conditions are randomly sampled from the test data, and the networks
are asked to forecast the next 896 steps, which amounts to approximately
8 Lyapunov times (after an initial warm-up period of 20 timesteps). As
comparison metrics, we consider the Root Mean Squared Error (RMSE)
and the error on the power spectrum (frequency content). Moreover, we
consider two different noise levels on the data, a signal-to-noise ratio of
SNR = 60, and a case of SNR = 10. The network hyperparameters are
reported in Appendix C.3.

The results are illustrated in Figure 5.3. In the case of low-level noise
(SNR = 60), all methods show approximately the same performance in
terms of the RMSE. BPTT-SA shows slightly better performance on average
and smaller variations between the different seeds (increased robustness)
on the power spectrum error. However, the differences are minor. In the
SNR = 10 noise level, all three methods exhibit similar errors.

5.3.2 Viscous Flow Past a Cylinder in a Channel

In the following, we consider long-term forecasting of the dynamics of the
incompressible Navier-Stokes flow past a cylinder in a channel in Reynolds
number Re = 200 in two dimensions. The reason for selecting this flow
is that long-term prediction is possible and that the flow is characterized
by reduced-order effective dynamics. The latter implies that snapshots of
the flow can be mapped to a reduced-order latent space, representing the
manifold of the effective dynamics.

We evaluate the effectiveness of BPTT-SA in two types of recurrent
neural networks, Convolutional RNNs (ConvRNN) and Convolutional
Autoencoder RNNs (CNN-RNNs). The latter first identify a latent reduced-
order representation encoding the intrinsic dimensionality of the fluid
flow and learn the temporal dynamics on the latent space. In contrast,
ConvRNNs are replacing the operations on the RNN cell with convolutions
while keeping the gating mechanisms (Kumar et al., 2020; Shi, Z. Chen,
et al., 2015) and do not require low-dimensional intrinsic dynamics. For
more information about the data generation, and hyperparameter tuning
refer to Appendix C.4.1 and Appendix C.4.2 respectively.

102 scheduled autoregressive bptt

BPTT-TF BPTT-SS BPTT-SA
0.00

0.05

0.10

0.15

0.20
R

M
SE

(a) SNR = 60

BPTT-TF BPTT-SS BPTT-SA
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Po
w

er
 S

pe
ct

ru
m

 E
rr

or

(b) SNR = 60

BPTT-TF BPTT-SS BPTT-SA
0.00

0.05

0.10

0.15

0.20

R
M

SE

(c) SNR = 10

BPTT-TF BPTT-SS BPTT-SA
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Po
w

er
 S

pe
ct

ru
m

 E
rr

or

(d) SNR = 10

Figure 5.3: Evaluation of the performance of the training methods in forecasting
the long-term dynamics of the Mackey-Glass time series. A prediction
horizon of 896 timesteps is considered, and results are averaged over
100 initial conditions in the test data.

Two comparison metrics are considered, the RMSE error (the smaller, the
better) and the structural similarity index measure (SSIM) (Z. Wang et al.,
2004) (the higher, the better). The performance of the CNN-RNN models is
illustrated in Figures 5.4(a) and 5.4(b). Four random seeds are considered
to evaluate the robustness of the training algorithms. BPTT-SA leads on
average to a drastic reduction of the RMSE, and increase in the SSIM. The
same holds for ConvRNNs models as depicted in Figures 5.4(c) and 5.4(d).
CNN-RNNs exhibit lower errors in both metrics compared to ConvRNNs as
they take into account the reduced-order nature of the effective dynamics,
and predict on a low-dimensional latent space.

In Figure 5.5, we plot the evolution of the RMSE and the SSIM errors in
time. We observe that BPTT-SA alleviates the error propagation and leads
to more accurate long-term predictions in both metrics.

5.3 results 103

BPTT BPTT-SS BPTT-SA
0.00

0.05

0.10

0.15

0.20

0.25

R
M

SE

(a) CNN-RNN

BPTT BPTT-SS BPTT-SA

0.985

0.990

0.995

1.000

SS
IM

(b) CNN-RNN

BPTT BPTT-SS BPTT-SA
0.0

0.2

0.4

0.6

0.8

R
M

SE

(c) Conv-RNN

BPTT BPTT-SS BPTT-SA

0.95

0.96

0.97

0.98

0.99

SS
IM

(d) Conv-RNN

Figure 5.4: Evaluation of the performance of Scheduled Autoregressive BPTT
(BPTT-SA) in long-term prediction on the viscous flow past a cylinder
in a channel for two model types, CNN-RNNs and ConvRNNs. Better
prediction capability of a model is demonstrated by lower RMSE and
higher SSIM scores.

0 200 400 600 800
Timestep

0.0

0.2

0.4

0.6

0.8

R
M

SE

BPTT
BPTT-SS
BPTT-SA

(a) RMSE in ConvRNNs

0 200 400 600 800
Timestep

0.94

0.96

0.98

1.00

SS
IM

BPTT
BPTT-SS
BPTT-SA

(b) SSIM in ConvRNNs

Figure 5.5: The evolution of the SSIM and RMSE errors in time in long-term
autoregressive prediction in the test data on the viscous flow past a
cylinder in a channel for ConvRNNs. Better prediction capability of a
model is demonstrated by lower RMSE and higher SSIM scores.

104 scheduled autoregressive bptt

TA
R

G
ET

Timestep 1 Timestep 10 Timestep 20 Timestep 120
B

PT
T-

TF
B

PT
T-

SS
B

PT
T-

SA

Figure 5.6: Prediction samples in different timesteps in the autoregressive testing
mode of ConvRNN networks trained with different methods in the
viscous flow past a cylinder in a channel dataset.

In Figure 5.6 we plot samples from the autoregressive testing phase for
the ConvRNN models. We observe that models trained with BPTT and
BPTT-SS lead to unphysical predictions after some timesteps. At lead time
T = 120, only BPTT-SA captures the flow characteristics.

In the following, we analyze the behavior of the errors during training.
The evolution of the training and validation error in the CNN-RNN train-
ing on the in viscous flow past a cylinder in a channel dataset is given
in Figure 5.7. In BPTT, the training error decreases, but it does not capture
the long-term autoregressive prediction error. For this reason, the autore-
gressive validation error is increasing, as the model is overfitting in the
one-step-ahead prediction error. In BPTT-SS, the training error encodes the
autoregressive loss due to the scheduling approach. However, as the method
is not backpropagating the gradients, training is challenging as the iterative
forecasting probability p is increased and the training error is not reduced.
For this reason, the validation error also remains high. In contrast, in the
model trained with BPTT-SA, the autoregressive validation error decreases,
demonstrating that the training loss and the gradient successfully encode
the objective. A similar behavior is observed in Figure 5.8 for the training
of ConvRNN models.

5.4 discussion 105

5.4 discussion

In this chapter, we proposed a scheduled autoregressive variant of BPTT
(BPPT-SA) to alleviate the exposure bias problem, i. e. the iterative error
propagation in iterative forecasting of RNN architectures. The method is
benchmarked against standard BPTT and a schedule sampling approach in
low-dimensional time series problems and the viscous flow past a cylinder
in a channel. We demonstrate that BPTT-SA can successfully reduce the error
in long-term high-dimensional spatio-temporal prediction in ConvRNNs
and CNN-RNNs at the viscous flow past a cylinder, at no extra training
cost.

The BPTT-SA method can be applied to any recurrent architecture, with-
out any additional training time or memory cost. BPTT-SA can be very
helpful in applications where building models for long-term forecasting
is desirable, and retraining different models for different lead times is
computationally prohibitive. BPTT-SA can be used to improve long-term
prediction of data-driven surrogate models, or ROMs of dynamical systems,
Computational Fluid Dynamic (CFD), or Finite Element (FEM) codes. The
method can also be used for surrogate modeling of the environment dy-
namics in model-based Reinforcement Learning. Moreover, the method can
be utilized to fine-tune any recurrent architecture to achieve state-of-the-art
results in long-term prediction in any relevant application, e. g. (Su et al.,
2020). In low-dimensional time series, however, BPTT-SA does not improve
long-term forecasting ability, according to the results presented in this chap-
ter. An exciting avenue for future research is the application of BPTT-SA to
climate (Rasp et al., 2020) and fluid flow (Wiewel et al., 2019) datasets.

106 scheduled autoregressive bptt

0 200 400 600 800 1000
Epoch

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Lo
ss

BPTT loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 6.47e-03

(a) CNN-RNN trained with BPTT

0 200 400 600 800 1000
Epoch

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Lo
ss

BPTT-SS loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 6.27e-03

(b) CNN-RNN trained with BPTT-SS

0 200 400 600 800 1000
Epoch

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Lo
ss

BPTT-SA loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 1.09e-03

(c) CNN-RNN trained with BPTT-SA

Figure 5.7: Evolution of the training and validation losses in CNN-RNN training
in the viscous flow past a cylinder in a channel dataset.

5.4 discussion 107

0 1000 2000 3000 4000 5000
Epoch

0.00

0.02

0.04

0.06

0.08

Lo
ss

BPTT loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 2.17e-02
BPTT loss in validation data
Optimal BPTT validation loss 3.19e-05

(a) ConvRNN trained with BPTT

0 1000 2000 3000 4000 5000
Epoch

0.00

0.02

0.04

0.06

0.08

Lo
ss

BPTT-SS loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 1.82e-03

(b) ConvRNN trained with BPTT-SS

0 1000 2000 3000 4000 5000
Epoch

0.00

0.02

0.04

0.06

0.08

Lo
ss

BPTT-SA loss in trainining data
Autoregressive loss in validation data
Optimal autoregressive validation loss 1.56e-03

(c) ConvRNN trained with BPTT-SA

Figure 5.8: Evolution of the training and validation losses in ConvRNN training
in the viscous flow past a cylinder in a channel dataset.

6
M U LT I S C A L E S I M U L AT I O N S O F C O M P L E X S Y S T E M S B Y
L E A R N I N G T H E I R E F F E C T I V E D Y N A M I C S

6.1 related work

In recent years, a number of multiscale methodologies have been pro-
posed to tackle the prohibitive computational cost of resolving all scales
in multiscale problems. Such methodologies are the Equation-Free Frame-
work (EFF) (Bar-Sinai et al., 2019; Kevrekidis, Gear, and Hummer, 2004;
Kevrekidis, Gear, Hyman, et al., 2003; Laing et al., 2010), the Heterogeneous
Multiscale Method (HMM) (Weinan, Engquist, et al., 2003, 2007; Weinan,
X. Li, et al., 2004), and the FLow AVeraged integatoR (FLAVOR) (M. Tao
et al., 2010).

These algorithms try to exploit the multiscale character of the dynam-
ics (Car et al., 1985; Erban et al., 2006; Kevrekidis, Gear, and Hummer, 2004;
Kevrekidis, Gear, Hyman, et al., 2003; Kevrekidis and Samaey, 2009; Weinan,
Engquist, et al., 2003), by distinguishing fine (expensive to simulate) and
coarse scales (affordable). The EFF relies on few fine-scale simulations that
are used to acquire, through “restricting”, information about the evolution
of the coarse-grained quantities of interest. The fine-scale dynamics are
obtained by judiciously “lifting” the coarse scales to return to the fine-scale
description of the system and repeat. In order to propagate the coarse-
grained (latent) dynamics, EFF employs timesteppers (latent propagators).
When the EFF reproduces trajectories of the original system, the identified
low-order dynamics represent the intrinsic system dynamics, also called
effective dynamics, inertial manifold (Linot et al., 2020; J. C. Robinson,
1994) or reaction coordinates in molecular kinetics. The goal of multiscale
methods is to minimize the computational cost while maintaining the
predictive accuracy of the propagated dynamics. Their success and scala-
bility to high-dimensional systems have been hindered by the challenges
of identifying accurate “lifting” operators to recover the high-dimensional
micro-scale system dynamics from the reduced-order information of the
coarse-grained state and the identification of accurate coarse-grained (latent)
state propagators.

109

110 learning effective dynamics

Close to our work presented in this chapter, in the context of the EFF, the
authors in S. Lee et al., 2020 identify a PDE on a coarse representation by
diffusion maps, Gaussian processes, or neural networks and utilize forward
integration in the coarse representation. Such previous works, however, fail
to employ one or more of the following mechanisms: consider the coarse-
scale dynamics (Geneva et al., 2020; Milano et al., 2002), account their non-
Markovian (Bhatia et al., 2021; S. Lee et al., 2020) or nonlinear nature (Lusch
et al., 2018), exploit a probabilistic generative mapping (Geneva et al., 2020;
Gonzalez et al., 2018; Hasegawa et al., 2020; Maulik et al., 2021) from
the coarse to the fine-scale, learn simultaneously the latent space and its
dynamics in an end-to-end fashion and not sequentially (Bhatia et al., 2021;
Geneva et al., 2020; Gonzalez et al., 2018; Hasegawa et al., 2020; S. Lee et al.,
2020; Lusch et al., 2018; Maulik et al., 2021), alternate between micro and
macro dynamics (Geneva et al., 2020; Gonzalez et al., 2018; Hasegawa et al.,
2020; S. Lee et al., 2020; Lusch et al., 2018; Maulik et al., 2021), and scale to
high-dimensional systems (Gonzalez et al., 2018; S. Lee et al., 2020; Maulik
et al., 2021).

We present a framework that resolves critical issues of previously pro-
posed multiscale methodologies through ML algorithms that (i) deploy
RNNs with gating mechanisms to evolve the coarse-grained dynamics
and (ii) employ advanced (convolutional, or probabilistic) AEs to transfer
in a systematic, data-driven manner, the information between coarse and
fine-scale descriptions. The framework learns the effective reduced-order
dynamics (LED) and is orders of magnitude faster than the micro-scale
solvers while maintaining predictive accuracy.

Augmenting multiscale frameworks (including EFF, HMM, FLAVOR)
with state-of-the-art ML algorithms allows for evolving the coarse-scale
dynamics by taking into account their time history and by providing con-
sistent lifting (decoding) and restriction (encoding) operators to transfer
information between fine and coarse scales. We demonstrate that the pro-
posed framework allows for simulations of complex multiscale systems
that reduce the computational cost by orders of magnitude to capture
spatio-temporal scales that would be impossible to resolve with existing
computing resources.

This chapter is based on the paper “Multiscale Simulations of Complex
Systems by Learning their Effective Dynamics” (P. R. Vlachas, Arampatzis,
et al., 2022). The computational resources were provided by a grant from
the Swiss National Supercomputing Centre (CSCS) under project s929.

6.2 methods 111

6.2 methods

We propose a framework for learning the effective dynamics of complex
systems that allows for accurate prediction of the system evolution at a
significantly reduced computational cost.

In the following, the high-dimensional state of a dynamical system is
given by st ∈ Rds , and the discrete time dynamics are given by

st+∆t = F(st),

where ∆t is the sampling period and F may be nonlinear, deterministic or
stochastic. We assume that the state of the system at time t can be described
by a vector zt ∈ Z , where Z ⊂ Rdz is a low dimension manifold with
dz � ds. In order to identify this manifold, an encoder EwE : Rds → Rdz

is utilized, where wE are trainable parameters, transforming the high-
dimensional state st to zt = EwE (st). In turn, a decoder maps back this
latent representation to the high-dimensional state, i. e. s̃t = DwD (zt).

For deterministic systems, the optimal parameters {w?
E , w?

D} are identi-
fied by minimizing the mean squared reconstruction error (MSE),

w?
E , w?

D = arg min
wE ,wD

〈
(st − s̃t)

2
〉
= arg min

wE ,wD

〈(
st −DwD

(
EwE (st)

))2〉
,

where 〈·〉 denotes the mean. Convolutional neural network (LeCun et al.,
2015) autoencoders (CNN-AE) that take advantage of the spatial structure
of the data are embedded into LED.

For stochastic systems, DwD is modeled with a Mixture Density Network
(MDN) decoder (Bishop, 1994). Further details on the implementation of
the MDN decoder are provided in Chapter 2, in Section 2.1.5, along with
other components embedded in LED like AEs in Section 2.1.1, Variational
AEs in Section 2.1.2, and CNNs in Section 2.1.3.

As a nonlinear propagator in the low-order manifold (coarse scale), an
RNN is employed, capturing non-Markovian, memory effects by keeping
an internal memory state. The RNN is learning a forecasting rule

ht = F
wFhh
hh

(
zt, ht−∆t

)
, z̃t+∆t = F

wFho
ho

(
ht
)
,

where ht ∈ Rdh is an internal hidden memory state, z̃t+∆t is a latent state
prediction, FwFhh

hh and FwFho
ho are the hidden-to-hidden, and the hidden-to-

output mappings, and wFhh , wFho are the trainable parameters of the RNN.

112 learning effective dynamics

One possible implementation of FwFhh
hh and FwFho

ho is the LSTM (Hochreiter
and Schmidhuber, 1997), presented in Section 2.1.4.2.

ENCODER ENCODER

RNN RNN RNNRNN

ENCODER

RNN

‘LIFT’

RNNRNN

ENCODERENCODERDECODER

RNN ⋯

Macro dynamics
(latent) for Tm

Micro dynamics for Twarm

Micro dynamics Tμ

Macro dynamics
(latent) for Tm

‘RESTRICT’

Figure 6.1: Multiscale-LED: Starting from an initial condition, use the equa-
tions/first principles to evolve the high-dimensional dynamics for a
short period Twarm. During this warm-up period, the state st is passed
through the encoder network. The outputs of the autoencoder are it-
eratively provided as inputs to the RNN, to warm-up its hidden state.
Next, iteratively, (1) starting from the last latent state zt the RNN
propagates the latent dynamics for Tm � Twarm, (2) lift the latent
dynamics at t = Twarm + Tm back to the high-dimensional state, (3)
starting from this high-dimensional state as an initial condition, use
the equations/first principles to evolve the dynamics for Tµ � Tm.

The role of the RNN is twofold. First, it is updating its hidden memory
state ht, given the current state provided at the input zt and the hidden
memory state at the previous timestep ht−∆t, tracking the history of the low-
order state to model non-Markovian dynamics. Second, given the updated
hidden state ht the RNN forecasts the latent state at the next timestep(s)
z̃t+∆t. The RNN is trained to minimize the forecasting loss ||z̃t+∆t− zt+∆t||22
by BPTT (P. J. Werbos, 1988).

The LSTM and the AE, jointly referred to as LED, are trained on data
from simulations of the fully resolved (or micro-scale) dynamical system.
The two networks can either be trained sequentially or together. In the first
case, the AE is pre-trained to minimize the reconstruction loss, and then
the LSTM is trained to minimize the prediction loss on the latent space (AE-
LSTM). In the second case, they are seen as one network trying to minimize
the sum of reconstruction and prediction losses (AE-LSTM-end2end). For
large, high-dimensional systems, the later approach of end-to-end training

6.2 methods 113

is computationally expensive. After training, LED is employed to forecast
the dynamics on unseen data by propagating the low-order latent state
with the RNN and avoiding the computationally expensive simulation of
high-dimensional dynamics. We refer to this mode of propagation, iter-
atively propagating only the latent/macro-dynamics, as Latent-LED. As
non-Markovian models are not self-starting, we note that an initial small
warm-up period is required, feeding the LED with data from the micro
dynamics.

The LED framework allows for data-driven information transfer between
coarse and fine scales through the AE. Moreover, it propagates the latent
space dynamics without the need to upscale back to the high-dimensional
state-space at every timestep. As is the case for any approximate iter-
ative integrator (here is the RNN), the initial model errors will propa-
gate. In order to mitigate potential instabilities, inspired by the Equation-
Free (Kevrekidis, Gear, Hyman, et al., 2003), we propose the multiscale
forecasting scheme in Figure 6.1, alternating between micro dynamics for
Tµ and macro-dynamics for Tm. In this way, the approximation error can
be reduced at the cost of the computational complexity associated with
evolving the high-dimensional dynamics. We refer to this mode of prop-
agation as Multiscale-LED, and the ratio ρ = Tm/Tµ as multiscale ratio.
In Multiscale-LED, the interface with the high-dimensional state-space is
enabled only at the timesteps and scales of interest. This is in contrast to
Hernández et al., 2018; Sultan et al., 2018, and is easily adaptable to the
needs of particular applications, thus augmenting the arsenal of models
developed for multiscale problems.

Training of LED models is performed with the Adam stochastic opti-
mization method (Kingma et al., 2014), and validation-based early stopping
is employed to avoid overfitting. All LED models are implemented in
Python (Van Rossum et al., 1995) in the Pytorch (Paszke et al., 2019)
library, mapped to a single Nvidia Tesla P100 GPU, and executed on the
XC50 compute nodes of the Piz Daint supercomputer at the Swiss national
supercomputing centre (CSCS). LED supports data-parallelism by employ-
ing the Horovod (Sergeev et al., 2018) library to parallelize the data of a
batch among multiple GPUs.

114 learning effective dynamics

6.3 comparison measures

In this section, we elaborate on the metrics used to quantify the effectiveness
of the proposed approach to capture the dynamics and the state statistics
of the systems under study. The Mean Normalized Absolute Difference
(MNAD) is used to quantify the prediction performance of a method in a
deterministic system. This metric was selected to facilitate comparison of
LED with Equation-Free variants (S. Lee et al., 2020).

6.3.1 Mean Normalised Absolute Difference

Assume that a model is used to predict a spatio-temporal field o(x, t), at
discrete state xi and time tj locations. Predicted values from a model (neural
network, etc.) are denoted with õ, while the ground-truth (simulation of the
equations with a solver based on first principles) with o. The normalized
absolute difference (NAD) between the model output and the ground-truth
is defined as

NAD(tj) =
1

Nx

Nx

∑
i=1

|o(xi, tj)− ô(xi, tj)|
maxi,j(o(xi, tj))−mini,j(o(xi, tj))

, (6.1)

where Nx is the dimensionality of the discretized state x. The NAD depends
on the time tj. The mean NAD (MNAD) is given by the mean over time of
the NAD score, i.e.

MNAD =
1

NT

NT

∑
j=1

NAD(tj), (6.2)

where NT is the number of timesteps considered. The MNAD is used in
the FitzHugh-Nagumo model, and the Kuramoto-Sivashinsky equation,
to quantify the prediction accuracy of LED and benchmark against other
methods (e. g. other propagators on the latent space) or against other
Equation-Free variants.

6.3.2 Pearson Correlation Coefficient

Assume as before, the spatio-temporal field o(x, t), at discrete state xi and
time tj locations. This can be vectorized in ovec = vec(o(x, t)) ∈ RNx ·Nt×1.
The same applies to the vectorized prediction õvec = vec(õ(x, t)) ∈ RNx ·Nt×1.

6.4 results 115

We can compute the Pearson correlation coefficient, or simply correlation,
as

Correlation =
COV

(
ovec, õvec

)

σ(ovec) σ(õvec)
, (6.3)

where COV is the covariance, and σ is the standard deviation.

The correlation is used as a prediction performance metric in the Kuramoto-
Sivashinsky equation.

6.4 results

We demonstrate the application of LED in several benchmark problems and
compare its performance with existing state-of-the-art algorithms.

6.4.1 FitzHugh-Nagumo Model

LED is employed to capture the dynamics of the FitzHugh-Nagumo model
(FHN) (FitzHugh, 1961; Nagumo et al., 1962). The FHN model describes
the evolution of an activator u(x, t) = ρac(x, t) and an inhibitor density
v(x, t) = ρin(x, t) on the domain x ∈ [0, L]:

∂u
∂t

= Du ∂2u
∂x2 + u− u3 − v,

∂v
∂t

= Dv ∂2v
∂x2 + ε(u− α1v− α0).

(6.4)

The system evolves periodically under two timescales, with the activa-
tor/inhibitor density acting as the “fast”/“slow” variable, respectively. The
bifurcation parameter ε = 0.006 controls the difference in the timescales.
We choose Du = 1, Dv = 4, L = 20, α0 = −0.03 and α1 = 2.

Equation 6.4 is discretized with N = 101 grid points and solved using the
Lattice Boltzmann (LB) method (Karlin et al., 2006), with timestep δt = 0.005.
To facilitate comparison with S. Lee et al., 2020, we employ the LB method
to gather data starting from 6 different initial conditions to obtain the
mesoscopic solution considered here as the fine-grained solution. The data
is sub-sampled, keeping every 200

th data points, i. e. the coarse timestep
is ∆t = 1. Three time series with 451 points are considered for training,
two time series with 451 points for validation, and 104 data points from
a different initial condition for testing. For the identification of the latent

116 learning effective dynamics

5 10 15
Latent dimension

°6

°4

°2

lo
g 1

0(
M

S
E

)

Figure 6.2: Comparison of the reconstruction MSE in the test data in the FHN
between PCA (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=5.0

DiffMaps w=1.0

AE

CNN-AE

), Diffusion Maps (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=5.0

DiffMaps w=1.0

AE

CNN-AE

), Autoencoder (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=5.0

DiffMaps w=1.0

AE

CNN-AE

), and Convo-

lutional Autoencoder (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=1.0

AE

CNN-AE).

space, we compare PCA, diffusion maps (DiffMaps), feedforward AE, and
CNN-AE, in terms of the mean squared error (MSE) of the reconstruction
in the test data, plotted in Figure 6.2. The MSE is plateauing after dz = 2,
and the AE and CNN-AE exhibit at least an order of magnitude lower
MSR compared to PCA and DiffMaps. For this reason, we employ an AE
with dz = 2 for the LED. The hyperparameters of the networks (reported
in Table D.1) are tuned based on the MSE on the validation data. The
architecture of the CNN is reported in Table D.3, and depicted in Figure 6.3.
The inhibitor and activator density are considered two channels of the CNN.

In Figure 6.4, we compare various propagators in the forecasting of
the macro (latent dynamics), starting from 32 different initial conditions
in the test data, up to a horizon of Tf = 8000. We benchmark an AE-
LSTM trained end-to-end (AE-LSTM-end2end), an AE-LSTM where the
AE is pre-trained (AE-LSTM), a fully connected feedforward neural net-
work, i. e. multi-layered perceptron (AE-MLP), Reservoir Computing (AE-
RC) (Pathak, Hunt, et al., 2018; P. R. Vlachas, Pathak, et al., 2020), and the
sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor, et al.,
2016) algorithm (AE-SINDy). As a comparison metric, we consider the mean
normalized absolute difference (MNAD), averaged over the 32 initial condi-
tions. The MNAD is computed on the inhibitor and the activator density,
as the difference between the result of the LB simulation v(x, t), considered

6.4 results 117

z ∈ ℝ2⋯

(u, v) ∈ ℝ2×101+27

8 × 64
16 × 32 32 × 16 4 × 8

FC
(

)
32 × 8

+CELU

CONV
k = 5

CONV
k = 5

CONV
k = 5

CONV
k = 5

FC
(

)
8 × 32

+CELU

⋯

8 × 64

16 × 3232 × 164 × 8 CONV
k = 5

CONV
k = 5

CONV
k = 5

CONV
k = 5

ZERO PADDING (2,2)

CONV. 1D ()k = 5

AVG. POOLING

CELU

CONV layer (encoder)
UPSAMPLE × 2

CONV. TRANSPOSE 1D ()k = 5

CELU

CONV layer (decoder) OUTPUT activation
tanh+ ≡ 1 + 0.5 tanh

0

0

(u, v) ∈ ℝ2×101+27

0

0

Figure 6.3: The architecture of the CNN employed in the FHN equation. First,
the input is padded to the closest power of two. Then, four layers of
consecutive application of 1D convolutions, average pooling, CELU
activations functions, and dropout are used. Then an MLP is utilized
to project to the low-order latent space. The output activation of the
MLP is also 1 + 0.5 tanh(·).

as ground-truth, and the model forecasts ṽ. The warm-up period for all
propagators is set to Twarm = 60. The hyperparameters of the networks
(reported in Tables D.2, D.4 and D.5, along with the training times) are
tuned based on the MNAD on the validation data. The LSTM-end2end and
the RC show the lowest test error, while the variance of the RC is higher. In
the following, we consider an LSTM-end2end propagator for the LED.

LED is benchmarked against EFF variants (S. Lee et al., 2020) in the
FHN equation in Figure 6.5. As a metric for the accuracy, the MNAD is
considered consistent with S. Lee et al., 2020 to facilitate comparison. The
EFF variants (S. Lee et al., 2020) are based on the identification of PDEs on
the coarse level (CSPDE). LED is compared with CSPDEs in forecasting the
dynamics of the FHN equation starting from an initial condition from the
test data up to the final time Tf = 451. CSPDE variants utilize Gaussian
processes (GP) or neural networks, features of the fine-scale dynamics
obtained through diffusion maps (F1 to F3), and forward integration to
propagate the coarse representation in time. LED outperforms CSPDE
variants by an order of magnitude. In Figure 6.7, the latent space of LED
is plotted against the attractor of the data embedded in the latent space.
Even for long time horizons (here Tf = 8000), the LED forecasts stay on the
periodic attractor.

118 learning effective dynamics

0.00

0.05

0.10

0.15

M
N

A
D

(v
,ṽ

)

Tf = 8000

(a) MNAD on the inhibitor density

0.00

0.05

0.10

0.15

M
N

A
D

(u
,ũ

)

Tf = 8000

(b) MNAD on the activator density

Figure 6.4: Comparison of macrodynamics propagators (

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM-end2end;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-MLP;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-RC;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDyAE-SINDy) in iterative latent
forecasting. The density and mean MNAD (averaged over 32 initial
conditions) between the predicted and ground-truth evolution of the
inhibitor density is plotted.

0.00 0.02
MNAD(v, ṽ)

LED dz = 2
CSPDE-GP
CSPDE-NN

CSPDE-GP-F1
CSPDE-NN-F1
CSPDE-GP-F2
CSPDE-NN-F2

5.15E-03
1.62E-02
1.56E-02
1.62E-02
1.57E-02

2.20E-02
2.11E-02

(a) MNAD on the inhibitor density

0.00 0.02
MNAD(u, ũ)

LED dz = 2
CSPDE-GP
CSPDE-NN

CSPDE-GP-F1
CSPDE-NN-F1
CSPDE-GP-F2
CSPDE-NN-F2

5.70E-03
1.59E-02
1.53E-02
1.58E-02
1.54E-02

2.39E-02
2.00E-02

(b) MNAD on the activator density

Figure 6.5: Comparison of Latent-LED with dz = 2 with Equation-Free variants
from S. Lee et al., 2020 in forecasting the dynamics of FHN starting
from one initial condition from the testing dataset.

6.4 results 119

1 5 10 20 100 Latent
Ω = Tm/Tµ

0.01

0.02

M
N

A
D

(v
,ṽ

)

Tµ = 10, Tf = 8000

(a) The inhibitor MNAD of
Multiscale-LED (AE-LSTM-
end2end, dz = 2) plotted as a
function of the multiscale ratio
ρ = Tm/Tµ.

1 5 10 20 100 Latent
Ω = Tm/Tµ

0.01

0.02

M
N

A
D

(u
,ũ

)

Tµ = 10, Tf = 8000

(b) The activator MNAD of
Multiscale-LED (AE-LSTM-
end2end, dz = 2) plotted as a
function of the multiscale ratio
ρ = Tm/Tµ.

1 5 10 20 100 Latent
Ω = Tm/Tµ

0

1

lo
g 1

0(
S
p
ee

d
-u

p
)

Tµ = 10, Tf = 8000

(c) The speed-up of Multiscale-LED
compared to the LB solver plot-
ted w. r. t. ρ. As Tm is increased
(increase ρ), the speed-up is in-
creased, albeit at the cost of an in-
creasing MNAD.

Figure 6.6: Results of LED applied on the FHN model.

120 learning effective dynamics

0.4 0.6

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test

Figure 6.7: The LED latent state (

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED) compared against the attractor of the
data embedded in the latent space (

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED

).

Latent-LED propagates the low-order dynamics and up-scales back to the
inhibitor density, forecasting its evolution accurately while being 60 times
faster than the LB solver. This speed-up can be decisive in accelerating
simulations and achieving much larger time horizons.

In Multiscale-LED, the approximation error of LED decreases at the cost
of reduced speed-up. This interplay can be seen in Figure 6.6.

Latent-LED (Tµ = 0), and Multiscale-LED, alternating between macro-
dynamics for Tm = 10 and high-dimensional dynamics for Tµ, are employed
to approximate the evolution and compare it against the LB solver in
forecasting up to Tf = 8000 starting from 32 initial conditions as before.
The warm-up period is set to Twarm = 60. For Tm = Tµ = 10 (ρ = 1),
the MNAD is reduced from approximately 0.019, to approximately 0.003
compared to Latent-LED. The speed-up, however, is reduced from 60 to 2.
By varying Tm ∈ {50, 100, 200, 1000}, Multiscale-LED achieves a trade-off
between speed-up and MNAD.

A prediction of the Latent-LED in the inhibitor and the activator density
is compared against the ground-truth in Figure 6.8.

6.4.2 The Kuramoto-Sivashinsky Equation

Here, we apply LED on the KS equation (Equation 2.15) on the domain
Ω = [0, L] with periodic boundary conditions u(0, t) = u(L, t) and ν = 1.
In the case of high dissipation and small spatial extent L (domain size),

6.4 results 121

0 10 20

x

0

200

400

t

v(x, t)

-0.12

-0.06

0.00

0.06

0.12

0 10 20

x

0

200

400

t

ṽ(x, t)

-0.12

-0.06

0.00

0.06

0.12

0 10 20

x

0

200

400

t

|v(x, t)° ṽ(x, t)|

1e-08

8e-04

2e-03

2e-03

3e-03

(a) Inhibitor density.

0 10 20

x

0

200

400

t

u(x, t)

-0.82

-0.40

0.01

0.42

0.84

0 10 20

x

0

200

400
t

ũ(x, t)

-0.82

-0.40

0.01

0.42

0.84

0 10 20

x

0

200

400

t

|u(x, t)° ũ(x, t)|

1e-07

3e-02

6e-02

1e-01

1e-01

(b) Activator density.

Figure 6.8: A trajectory starting from a testing initial condition (top), along with
the Latent-LED prediction (middle), and absolute difference (bottom).

122 learning effective dynamics

the long-term dynamics of KS can be represented on a low-dimensional
inertial manifold (Linot et al., 2020; J. C. Robinson, 1994), that attracts all
neighboring states at an exponential rate after a transient period. LED is
employed to learn the low-order manifold of the effective dynamics in KS.
The special case L = 22 considered here is studied extensively in Cvitanović
et al., 2010 and exhibits a structurally stable chaotic attractor, i. e. an inertial
manifold where the long-term dynamics lie. Equation 2.15 is discretized
to Equation 2.16, considering a grid of size 64 points, and solved using the
fourth-order method for stiff PDEs introduced in Kassam et al., 2005 with
a timestep of δt = 2.5 · 10−3 starting from a random initial condition. The
data are subsampled to ∆t = 0.25 (coarse timestep of the LED). 15 · 103

samples are used for training, and another 15 · 103 for validation. For testing
purposes, the process is repeated with a different random seed, generating
another 15 · 103 samples.

For the identification of a reasonable latent space dimension, we compare
PCA, AEs, and CNNs in terms of the reconstruction MSE in the test data as
a function of dz, plotted in Figure 6.10(a). MSE is plateauing after dz = 8,
indicating arguably the dimensionality of the attractor in agreement with
previous studies (Cvitanović et al., 2010; Linot et al., 2020), and that the
CNN is superior to the AE, while orders of magnitude better than PCA.
For this reason, we employ a CNN with dz = 8 for the autoencoding part
of the LED. The hyperparameters of the networks are tuned based on
the MSE on the validation data, reported in Tables D.6 and D.7, with the
network training times. The CNN architecture is illustrated in Figure 6.9
and described in detail in Table D.8.

z ∈ ℝ8⋯

u ∈ ℝ1×64

16 × 32
32 × 16 64 × 8 8 × 4

FC
(

)
32 × 8

+CELU

CONV
k = 5

CONV
k = 5

CONV
k = 5

CONV
k = 5

FC
(

)
8 × 32

+CELU

⋯

u ∈ ℝ1×64

16 × 32

32 × 1664 × 88 × 4 CONV
k = 5

CONV
k = 5

CONV
k = 5

CONV
k = 5

ZERO PADDING (2,2)

CONV. 1D ()k = 5

AVG. POOLING

CELU

CONV layer (encoder)
UPSAMPLE × 2

CONV1D ()k = 5

CELU

CONV layer (decoder) OUTPUT activation
tanh+ ≡ 1 + 0.5 tanh

Figure 6.9: The architecture of the CNN employed in KS.

6.4 results 123

5 10 15
Latent dimension

°4

°2

0

lo
g 1

0(
M

S
E

)

(a) Comparison of the reconstruction
mean squared error (MSE) in the
test data in the FHN dynamics be-
tween PCA (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=5.0

DiffMaps w=1.0

AE

CNN-AE

), Autoencoder (

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=5.0

DiffMaps w=1.0

AE

CNN-AE

),
and Convolutional Autoencoder
(

51015
Latent dimension

−6

−4

−2

lo
g 1

0(
M

S
E

)

PCA

DiffMaps w=1.0

AE

CNN-AE) as a function of the latent di-
mension.

°0.6

°0.4

L
og

(M
N

A
D

)

Tf = 800

(b) Comparison of different macrody-
namics propagators (

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM-

end2end;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-
MLP;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-RC;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDyAE-SINDy) in
iterative latent forecasting.

Figure 6.10

In Figure 6.10(b), we compare various propagators in predicting the
macro dynamics of LED, starting from 100 test initial conditions, up to
Tf = 800 (3200 timesteps). We employ a CNN-LSTM trained end-to-end
(CNN-LSTM-end2end), a CNN-LSTM where the CNN is pre-trained (CNN-
LSTM), a multi-layered perceptron (CNN-MLP), Reservoir Computing
(CNN-RC) (Pathak, Hunt, et al., 2018; P. R. Vlachas, Pathak, et al., 2020),
and the SINDy algorithm (CNN-SINDy) (Brunton, Proctor, et al., 2016). As
a comparison metric, we consider the MNAD, averaged over the 100 initial
conditions. The warm-up period for all propagators is set to Twarm = 60. The
hyperparameters (reported on Tables D.9 to D.11 along with the training
times) are tuned based on the MNAD on the validation data. While the
MLP and RC propagators exhibit large errors, the LSTM, LSTM-end2end,
and SINDy show comparable accuracy. In the following, we consider an
LSTM propagator for the LED.

Due to the chaoticity of the KS equation, iterative forecasting with LED
is challenging, as initial errors propagate exponentially. In order to assess
whether the iterative forecasting with LED leads to reasonable, physical
predictions, we plot the density of values in the ux − uxx space in Fig-
ure 6.11(a). The data come from a single long trajectory of size Tf = 8000
(32000 timesteps). We observe that LED, Figure 6.11(b), is able to qualita-
tively reproduce the density of the simulation.

124 learning effective dynamics

°2.5 0.0
ux

°2.5

0.0

2.5

u
x
x

Target Density

-1
-2
-3
-4
-5

(a) Reference

°2.5 0.0
ux

°2.5

0.0

2.5

u
x
x

Predicted Density

-1
-2
-3
-4
-5

(b) Prediction

Figure 6.11: The density of values in the ux − uxx space computed from a single
long trajectory of size Tf = 8000 (32000 timesteps) that matches
the prediction closely, illustrating that the LED is able to replicate
characteristics of the dynamical system and remain at the attractor,
even though propagating coarse dynamics.

In Figures 6.12(a) and 6.12(b) we plot the MNAD and correlation between
forecasts of LED and the reference with respect to the multiscale ratio ρ.
In Figure 6.12(c) the speed-up of LED is plotted against ρ. Latent-LED is
able to reproduce the long-term “climate dynamics” (P. R. Vlachas, Pathak,
et al., 2020), and remain at the attractor, while being more than two orders
of magnitude faster compared to the micro solver. As ρ is increased, the
error is reduced (correlation increased), at the cost of reduced speed-up.

Finally, in Figure 6.13, we compare the performance of Latent-LED (CNN-
LSTM) with previous studies (Pathak, Hunt, et al., 2018; P. R. Vlachas,
Pathak, et al., 2020), that forecast directly on the high-dimensional space.
Specifically, the Latent-LED matches the performance of an LSTM (no
dimensionality reduction) but shows inferior short-term forecasting ability
compared to an RC (no dimensionality reduction) forecasting on the high-
dimensional space. This is expected as the RC, and the LSTM have full
information about the state. In turn, when the RC is employed on the latent
space of LED as a macro-dynamics propagator, the error grows significantly,
and the performance is inferior to the CNN-LSTM case.

A KS trajectory is plotted in Figure 6.14, along with the latent space
evolution of Latent-LED and the predicted trajectory. We observe that
the long-term climate is reproduced, although the LED is propagating an
8-dimensional latent state.

6.4 results 125

0.25 0.5 1 2 4 8 Latent
Ω = Tm/Tµ

0.0

0.1

0.2

M
N

A
D

Tµ = 4, Tf = 50

(a) The MNAD of Multiscale-LED is
plotted as a function of the multi-
scale ratio ρ = Tm/Tµ.

0.25 0.5 1 2 4 8 Latent
Ω = Tm/Tµ

0.0

0.5

1.0

C
or

re
la

ti
on

Tµ = 4, Tf = 50

(b) Correlation between Multiscale-
LED predictions and the reference
data plotted as a function of the
multiscale ratio ρ = Tm/Tµ.

0.25 0.5 1 2 4 8 Latent
Ω = Tm/Tµ

0

1

2

lo
g 1

0(
S
p
ee

d
-u

p
)

Tµ = 4, Tf = 50

(c) The speed-up of Multiscale-LED
w. r. t. ρ. Evolution of the latent
state of LED (Tµ = 0) is up to two
orders of magnitude cheaper than
the micro-scale dynamics.

Figure 6.12: Results of Multiscale-LED applied on the KS equation.

126 learning effective dynamics

0 1 2
t/§1

°10

°5

0

lo
g(

M
N

A
D

)

Figure 6.13: Comparison of CNN-LSTM (LED) (

0.0 0.5 1.0 1.5 2.0 2.5

t/Λ1

−20

−15

−10

−5

0

lo
g
(M

S
E

)

CNN-LSTM

CNN-RC

LSTM

RC

), CNN-RC (

0.0 0.5 1.0 1.5 2.0 2.5

t/Λ1

−20

−15

−10

−5

0

lo
g
(M

S
E

)

CNN-LSTM

CNN-RC

LSTM

RC

), LSTM
(

0.0 0.5 1.0 1.5 2.0 2.5

t/Λ1

−20

−15

−10

−5

0

lo
g
(M

S
E

)

CNN-LSTM

CNN-RC

LSTM

RC

), and RC (

0.0 0.5 1.0 1.5 2.0 2.5

t/Λ1

−20

−15

−10

−5

0

lo
g
(M

S
E

)

CNN-LSTM

CNN-RC

LSTM

RC) in short-term forecasting of the KS dynamics,
time is normalized with the Lyapunov time TΛ1 = 1/Λ1 = 20.83.

Figure 6.14: Contour plot of the KS dynamics starting from an initial condition
from the test data (left). The evolution of the dz = 8 dimensional
latent state of Latent-LED (middle). The predicted field by Latent-
LED iteratively propagating the dynamics on a dz = 8 dimensional
latent space, after a warm-up period Twarm = 60 (Tµ = 0) (right).

6.4 results 127

6.4.3 Viscous Flow Past a Cylinder

The flow past a cylinder is a widely studied problem in fluids (Zdravkovich,
1997), that exhibits a rich range of dynamical phenomena like the transition
from laminar to turbulent flow in high Reynolds numbers and is used as
a benchmark for reduced-order modeling (ROM) approaches. The flow
past a cylinder in the two-dimensional space is simulated by solving the
incompressible Navier-Stokes equations with Brinkman penalization to
enforce the no-slip boundary conditions on the surface of the cylinder Bost
et al., 2010; Rossinelli et al., 2015, i. e.

∂u
∂t

+ (u · ∇)u = −∇p
ρ̃

+ ν∆u + λχ(s)(u(s) − u) ,

∇ · u = 0 ,
(6.5)

where u = [ux, uy]T ∈ R2 is the velocity, p ∈ R is the pressure field,
ρ̃ is the density, ν is the kinematic viscocity, and λ is the penalization
coefficient. The velocity-field u(s) ∈ R2 describes the translation of the
cylinder. The numerical method of the flow solver is finite differences, with
the incompressibility enforced through pressure projection. The solver is
implemented in C++. The computational domain is Ω = [0, 1]× [0, 0.5], the
cylinder is positioned at (0.2, 0.5) ∈ Ω, with diameter Dcyl = 0.075. The
cylinder is described by the characteristic function χ(s), that is χ(s) = 1
inside the cylinder Ω(s) and χ(s) = 0 outside Ω \ Ω(s). The domain is
discretized using 1024× 512 grid-points, and the timestep δt is adapted to
ensure that the Courant–Friedrichs–Lewy (CFL) number is fixed at 0.5.

Equation 6.5 is solved for the velocity u ∈ R2 and pressure field p ∈ R

using the pressure projection method. First, we perform advection and
diffusion of the flow field in the whole domain

u∗ = ut + δt
(
ν∆ut − (ut · ∇)ut) . (6.6)

The continuity equation requires the field to be divergence-free. This condi-
tion is imposed with the pressure projection

u∗∗ = u∗ − δt
∇pt+1

ρ̃
. (6.7)

The pressure field used here is obtained by solving the Poisson equation
emerging from the divergence of Equation 6.7, i.e.

∆pt+1 =
ρ̃

δt
∇ · u∗ . (6.8)

128 learning effective dynamics

Note that adding Equation 6.7 and Equation 6.6 yields the original Equa-
tion 6.5 without the penalization term for Euler timestepping. The timestep
is completed by applying the penalization force using δtλ = 1,

ut+1 = u∗∗ + χ(s),t+1(u(s),t+1 − u∗∗) . (6.9)

We remark that the penalization force acts as a Lagrange multiplier en-
forcing the translation motion of the cylinder on the fluid. The temporally
discrete equations described above are solved on a grid with spacing ∆x
using second-order central finite differences for diffusion terms and a
third-order upwind scheme for advection terms.

For the simulated impulsively started cylinder the Reynolds number for
a cylinder with diameter Dcyl moving with velocity vcyl in a fluid with
kinematic viscosity ν is defined as

Re =
Dcylvcyl

ν
. (6.10)

In the present simulations the cylinder moves with constant velocity vcyl =
0.15 in −x-direction. The computational domain is chosen to be Ω = [0, 1]×
[0, 0.5] and moves with the center of mass of the sphere with diameter
Dcyl = 0.075, that is fixed at (0.2, 0.5) ∈ Ω. We consider the application
of LED to two Reynolds numbers Re = 100 and Re = 1000, by setting
ν = 0.0001125 and ν = 0.00001125 respectively. For both cases, the domain
is discretized using 1024× 512 grid-points, and the timestep δt is adapted
to ensure that the CFL-number is fixed at 0.5.

The Strouhal number St describes the periodic vortex shedding at the
wake of the cylinder. It is defined as

St =
Dcyl fvs

ν
. (6.11)

where fvs is the frequency of vortex shedding. In our case, St = 0.175 for
Re = 100, and St = 0.225 for Re = 1000.

6.4 results 129

The state of the simulation is described by the velocity u ∈ R2 and the
pressure p ∈ R at each grid point. The drag coefficient (Cd) around the
cylinder for the viscosity µ and pressure p is calculated as

Fµ =

‹
µ(∇u +∇uᵀ) · n dS, (6.12)

Fp =

‹
−pn dS, (6.13)

Cd,µ =
2 · Fµ · u∞

$ · ‖u∞‖3 · Dcyl
, (6.14)

Cd,p =
2 · Fp · u∞

$ · ‖u∞‖3 · Dcyl
, (6.15)

Cd = Cd,µ + Cd,p, (6.16)

where u∞ = (1, 0)ᵀ is the free-stream velocity and n is the outward normal
of the cylinder perimeter.

The state of the LED at every timestep is composed of four fields, the two
components of the velocity field ux, and uy, the scalar pressure p at each
grid-point, and the vorticity field ω computed a-posteriori from the velocity
field, i. e. st = {ux, uy, p, ω} ∈ R4×512×1024. The simulation state st is saved
at a coarse time resolution ∆t = 0.2 for a total of 1000 coarse timesteps.
There are 512 grid points along the length of the channel and 1024 gird
points along the width of the channel. The flow is simulated in a cluster
with 12 CPU Cores, up to T = 200, after discarding the initial transient.
250 timesteps distanced ∆t = 0.2 in time (total time T = 50) are used for
training, 250 for validation, and the rest for testing purposes. The vortex
sheeding period is T ≈ 2.86 for Re = 100, and T ≈ 2.22 for Re = 1000.

For the autoencoding part, LED employs CNNs that take advantage of the
spatial correlations. The architecture of the CNN is illustrated in Figure 6.15

and explained in detail in Table D.12. The dimension of the latent space
is tuned based on the performance on the validation dataset to dz = 4 for
Re = 100 and dz = 10 for Re = 1000.

The LSTM propagator of LED is benchmarked against SINDy and RC in
predicting the dynamics, starting from 10 initial conditions randomly sam-
pled from the test data for a prediction horizon of T = 20 (100 timesteps).
The hyperparameters (reported on Tables D.13 to D.15 along with the
training times) are tuned based on the MNAD on the validation data. The
logarithm of the MNAD is given in Figure 6.18(a) for Re = 100 and Fig-
ure 6.19(a) for Re = 1000. For the Re = 100 case, the LSTM exhibits

130 learning effective dynamics

(u, ω, p) ∈ ℝ4×512×1024

4 × 256 × 512

6 ×

4 × 256 × 512
→ 20 × 128 × 256
→ 20 × 64 × 128
→ 20 × 32 × 64
→ 20 × 16 × 32
→ 20 × 8 × 16
→ 2 × 4 × 8⏟

z ∈ ℝdz

FC
(

)
64 × dz

+CELU

FC
(

)
dz × 64

+CELU

2 × 4 × 8 2 × 4 × 8 ⏟CONV. TRANSPOSE 2D ()k = 13

BATCH-NORM (not in last)

CELU (not in last)

CONV layer (decoder)ZERO PADDING (6, 6)

CONV. 2D ()k = 13

BATCH-NORM (not in last)

AVG. POOLING

CONV layer (encoder)

CELU

2 × 4 × 8
→ 20 × 8 × 16
→ 20 × 16 × 32
→ 20 × 32 × 64
→ 20 × 64 × 128
→ 20 × 128 × 256
→ 4 × 256 × 612

4 × 256 × 512

6 ×

2D BILINEAR
INTERPOLATION
(UPSAMPLING)

2D BILINEAR
INTERPOLATION

(DOWNSAMPLING)

OUTPUT activation
tanh+ ≡ 1 + 0.5 tanh

Figure 6.15: The architecture of the CNN employed in the flow past a cylinder
example.

lower MNAD and lower variance than RC and SINDy. For the challenging
Re = 1000 scenario, LSTM and RC exhibit lower MNAD than SINDy, with
the LSTM being more robust (lower variance).

A prediction of the vorticity ω by Latent-LED at lead time T = 4 is
given in Figure 6.16 for Re = 100, and Figure 6.17 for Re = 1000. LED
captures the flow for both Re ∈ {100, 1000}. The error concentrates mainly
around the cylinder, rendering the accurate prediction of the drag coefficient
challenging. In Figures 6.16(d) and 6.17(d), the latent space of Latent-LED
is compared with the transformation of the data to the latent space. The
predictions stay close to the attractor even for a very large horizon (T = 20).
The Strouhal number St (defined in Equation 6.11) describes the periodic
vortex shedding at the wake of the cylinder. By estimating the dominant
frequency of the latent state using a Fourier analysis, we find that LED
reproduces exactly the St of the system dynamics for both Re ∈ {100, 1000}
cases.

In the Re = 100 case, Latent-LED recovers a periodic nonlinear mode
in the latent space and can forecast the dynamics accurately, as illustrated
in Figure 6.16(d). In this case, approaches based on the Galerkin method
or dynamic mode decomposition (DMD), construct ROM with six to eight
degrees of freedom (Taira et al., 2020) that capture the most energetic spatio-
temporal modes. In contrast, the latent space of LED in the Re = 100 case
has a dimensionality of dz = 4. In the challenging Re = 1000 scenario, LED
with dz = 10 can capture accurately the characteristic vortex street and

6.4 results 131

long-term dynamics. We note that, to the best of our knowledge, ROMs for
flows past a cylinder have been so far limited to laminar periodic flows in
the order of Re = 100 while this study advances the state-of-the-art by one
order of magnitude.

(a) The vorticity field ω at lead time
T = 4 for Re = 100.

(b) The vorticity field ω̃ predicted by
Latent-LED with dz = 4 at final
time T = 4 for Re = 100.

(c) The MNAD for Re = 100.

0 2

PCA(z)1

°1

0

1

P
C

A
(z

) 2

(d) The LED latent state dynamics
(

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED) compared against the
attractor of the data embedded in
the latent space (

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED

).

Figure 6.16: Results of Latent-LED applied on the viscous flow past a cylinder at
Re = 100.

Starting from 4 initial conditions randomly sampled from the test data,
six LED variants (Latent-LED, Multiscale-LED with Tµ = 0.4, Tm ∈
{0.4, 0.8, 1.2, 2, 4} for Re = 100, and Latent-LED, Multiscale-LED with
Tµ = 1.6, Tm ∈ {0.8, 1.6, 3.2, 6.4, 12.8} for Re = 1000) are tested on pre-
dicting the dynamics of the flow up to Tf = 20, after Twarm = 2. The
MNAD is plotted in Figure 6.18(b) for Re = 100, and Figure 6.19(b) for
Re = 1000. The speed-up is plotted in Figure 6.18(d) for Re = 100, and Fig-
ure 6.19(d) for Re = 1000. The Latent-LED is two orders of magnitude faster
than the flow solver, while exhibiting MNAD errors of 0.02 and 0.04 for
Re = 100, and Re = 1000 respectively. By alternating between macro and
micro, the error is reduced, at the cost of decreased speed-up.

132 learning effective dynamics

(a) The vorticity field ω at lead time
T = 4 for Re = 1000.

(b) The vorticity field ω̃ predicted by
Latent-LED with dz = 10 at final
time T = 4 for Re = 1000.

(c) The MNAD for Re = 1000.

°5 0 5

PCA(z)1

°5

0

5

P
C

A
(z

) 2

(d) The LED latent state dynamics
(

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED) compared against the
attractor of the data embedded in
the latent space (

0.50 0.75

z1

0.3

0.4

0.5

0.6

0.7

z 2

Latent dynamics in test
Data

LED

).

Figure 6.17: Results of Latent-LED applied on the viscous flow past a cylinder at
Re = 1000.

6.4 results 133

°2.25

°2.00

°1.75

L
og

(M
N

A
D

)

Tf = 20

(a) Comparison of different macrody-
namics propagators (

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-RC;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDyAE-SINDy) for Re =
100.

1 2 3 5 10 Latent
Ω = Tm/Tµ

0.0175

0.0200

0.0225

M
N

A
D

Tµ = 0.4, Tf = 20

(b) The MNAD error on the drag be-
tween predictions by Multiscale-
LED with dz = 4 and the reference
data as a function of the multiscale
ratio ρ for Re = 100.

1 2 3 5 10 Latent
Ω = Tm/Tµ

0.03

0.04

|C
d
°

C̃
d
|/|

C̃
d
|

Tµ = 0.4, Tf = 20

(c) The relative error on the drag be-
tween predictions by Multiscale-
LED with dz = 4 and the reference
data as a function of the multiscale
ratio ρ for Re = 100.

1 2 3 5 10 Latent
Ω = Tm/Tµ

0

1

2

lo
g 1

0(
S
p
ee

d
-u

p
)

Tµ = 0.4, Tf = 20

(d) The speed-up of Multiscale-LED
compared to the flow solver w. r. t.
ρ for Re = 100.

Figure 6.18: Results on the viscous flow past a cylinder at Re = 100.

134 learning effective dynamics

°1.8

°1.6

°1.4

L
og

(M
N

A
D

)

Tf = 20

(a) Comparison of different macrody-
namics propagators (

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-LSTM;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDy

AE-RC;

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
N

A
D

(v
,ṽ

)

Tf = 8000

CNN-LSTM-end2end

CNN-LSTM

CNN-MLP

CNN-RC

CNN-SINDyAE-SINDy) for Re =
1000.

(b) The MNAD error on the drag be-
tween predictions by Multiscale-
LED with dz = 10 and the refer-
ence data as a function of the mul-
tiscale ratio ρ for Re = 1000.

0.5 1 2 4 8 Latent
Ω = Tm/Tµ

0.15

0.20

|C
d
°

C̃
d
|/|

C̃
d
|

Tµ = 1.6, Tf = 20

(c) The relative error on the drag be-
tween predictions by Multiscale-
LED with dz = 10 and the refer-
ence data as a function of the mul-
tiscale ratio ρ for Re = 1000.

0.5 1 2 4 8 Latent
Ω = Tm/Tµ

0

1

2

lo
g 1

0(
S
p
ee

d
-u

p
)

Tµ = 1.6, Tf = 20

(d) The speed-up of Multiscale-LED
compared to the flow solver w. r. t.
ρ for Re = 1000.

Figure 6.19: Results on the viscous flow past a cylinder at Re = 1000.

6.5 discussion 135

In Figures 6.18(c) and 6.19(c), the relative error on the drag coefficient Cd
(defined in Equation 6.12) is plotted as a function of the multiscale ratio ρ.
Latent-LED exhibits a relative error of 0.04 that is reduced to approximately
0.02 for ρ = 1. For Re = 1000, as we observe in Figure 6.17(c), the prediction
error of LED concentrates around the cylinder, which leads to an inaccurate
computation of the drag. Even though Multiscale-LED reduces this error, it
remains on the order of 0.15.

6.5 discussion

We have presented a novel framework for learning the effective dynamics
(LED) and accelerating the simulations of multiscale (stochastic or deter-
ministic) complex dynamical systems. Our work relies on augmenting the
Equation-Free formalism with state-of-the-art ML methods.

The LED framework is tested on several benchmark problems. In systems
where high-dimensional state dynamics are computationally expensive,
LED accelerates the simulation by propagating on the latent space and
upscaling to the high-dimensional states with the probabilistic, generative
mixture density, or deterministic convolutional decoder. This comes at
the cost of training the networks, which is performed once offline. The
trained model can forecast the dynamics starting from any arbitrary initial
condition.

The efficiency of LED was evaluated in forecasting the FitzHugh-Nagumo
model dynamics, achieving an order of magnitude lower approximation er-
ror compared to other Equation-Free approaches while being two orders of
magnitude faster than the Lattice Boltzmann solver. We demonstrated that
the proposed framework identifies the effective dynamics of the Kuramoto-
Sivashinsky equation with L = 22, capturing the long-term behavior (“cli-
mate dynamics”), achieving a speed-up of S ≈ 100. Furthermore, LED
captures the long-term dynamics of a flow past a cylinder in Re = 100 and
Re = 1000 accurately, while being two orders of magnitude faster than a
flow solver. We note that the present method is readily applicable to all
problems where Equation-Free, HMM, and FLAVOR methodologies have
been applied.

In summary, LED identifies and propagates the effective dynamics of
dynamical systems with multiple spatio-temporal scales providing signifi-
cant computational savings. Moreover, LED provides a systematic way of
trading between speed-up and accuracy for a multiscale system by switch-

136 learning effective dynamics

ing between the propagation of the latent dynamics and evolution of the
original equations, iteratively correcting the statistical error at the cost of
reduced speed-up.

The LED does not presently contain any mechanism to decide when to
upscale the latent space dynamics. We do not expect LED to generalize
to dynamical regions drastically different from those represented in the
training data. We can alleviate this issue by considering the uncertainty of
LED in the latent space predictions and by employing Bayesian networks
that can detect samples unseen during training. The present methodology
can be deployed both in problems described by first principles as well as for
problems where only data are available for either the macro or micro-scale
descriptions of the system.

In summary, LED creates unique algorithmic alloys between data-driven
and first-principles models and opens new horizons for the accurate and
efficient prediction of complex multiscale systems.

7
A C C E L E R AT I N G M O L E C U L A R S I M U L AT I O N S B Y
L E A R N I N G T H E I R E F F E C T I V E D Y N A M I C S

7.1 related work

In the context of Molecular Dynamics (MD), ML methods (Bishop, 2006;
Michie, 1968), exploiting the expressive power of deep networks and their
scalability to large datasets, have been used to alleviate the computational
burden associated with the simulation of proteins, leading to profound
scientific discoveries (Butler et al., 2018; Noé, Tkatchenko, et al., 2020; Schütt,
Chmiela, et al., 2020).

The pioneering work of Behler et al., 2007 utilized neural networks to
learn an approximate potential energy surface of density functional theory
(DFT) in bulk silicon from quantum mechanical calculations, performing
MD simulations with this approximate potential and accelerating the DFT
simulations. The field of data-driven learning of potential energy surfaces
and force fields is rapidly attracting attention with important recent exten-
sions and applications (Bartók et al., 2017; Cheng et al., 2019; Chmiela et al.,
2018; Faber et al., 2017; Hansen et al., 2013; Imbalzano et al., 2018; Rowe
et al., 2020; Rupp et al., 2012; Schütt, Sauceda, et al., 2018). ML is employed
to identify CG models for MD in Durumeric et al., 2019; J. Wang et al.,
2019; L. Zhang et al., 2018. Boltzmann generators, proposed in Noé, Olsson,
et al., 2019, sample from the equilibrium distribution of a molecular system
directly surpassing the need to perform MD.

Early ML methods for the identification of CVs utilized manifold learn-
ing techniques, i. e. diffusion maps (Boninsegna et al., 2015; Coifman,
Kevrekidis, et al., 2008; Preto et al., 2014; Rohrdanz et al., 2011; W. Zheng
et al., 2013), while others were based on the variational approach (Nuske
et al., 2014) leading to the time-lagged independent analysis (TICA) (Pérez-
Hernández et al., 2016). TICA is based on the Koopman operator theory, sug-
gesting the existence of a latent transformation to an infinite-dimensional
space that linearizes the dynamics on average. As a consequence, slow
CVs are modeled as linear combinations of feature functions of the state of
the protein (atom coordinates or internal structural coordinates). Coarse-

137

138 led for molecular systems

graining of the molecular dynamics is achieved by discretizing the state-
space and employing indicator vector functions as features (Buchete et al.,
2008; Noé, Doose, et al., 2011; Nuske et al., 2014; Ribeiro et al., 2018). Con-
sequently, the feature state dynamics reduce to the propagation law of a
Markov State Model (MSM). MSMs have been extended to ”Core Set MSMs”
in Schütte et al., 2011 employing Markovian milestoning (Vanden-Eijnden
et al., 2009) on metastable core sets.

More recently, the need for expert knowledge to construct the latent
feature functions has been alleviated by learning the latent space using
neural networks (Mardt et al., 2018; Wehmeyer et al., 2018). The dynamics
on the latent space are assumed to be linear and Markovian. For example,
VAMPnets (W. Chen et al., 2019; Mardt et al., 2018) learn nonlinear features
of the molecular state with autoencoder (AE) networks. However, they
are not generative and cannot recover the detailed configuration of the
protein (decoding part). Moreover, the method requires the construction of
an MSM to sample the latent dynamics and approximate the timescales of
the dynamics. Time-lagged AEs have been utilized to identify a reaction
coordinate embedding and propagate the dynamics in Ref. (Wehmeyer
et al., 2018), but they are not generative, as the learned mappings are
deterministic, while the effective dynamics are assumed to be Markovian.
AEs have been coupled with dynamic importance sampling in Bhatia et al.,
2021 to accelerate multiscale simulations and investigate the interactions of
RAS proteins with a plasma membrane.

Extensions to generative approaches include Refs. (Hernández et al., 2018;
Sidky et al., 2020; H. Wu et al., 2018). In Ref. (H. Wu et al., 2018), a deep
generative MSM is utilized to capture the long-timescale dynamics and
sample realistic alanine dipeptide configurations. Even though Mixture
Density Networks (MDNs) are employed in Ref. (Sidky et al., 2020) to prop-
agate the dynamics in the latent space, memory effects are not taken into
account. The proposed method is based on the autocorrelation loss, which
suffers from the dependency on the batch-size (Hernández et al., 2018).
In Ribeiro et al., 2018; Y. Wang et al., 2019, the Reweighted autoencoded
variational Bayes for enhanced sampling (RAVE) method is proposed that
alternates between iterations of MD and a Variational AE (VAEs) model.
RAVE encodes each timestep independently without considering the tem-
poral aspect of the latent dynamics. RAVE requires the transition to the
high-dimensional configuration space to progress the simulation in time,
which can be computationally expensive. In recent work, RAVE has been ex-

7.1 related work 139

panded to incorporate a “Variational Mixture of Posteriors” (Tomczak et al.,
2018) prior in the VAEs (D. Wang et al., 2021) enhancing its performance.

State-of-the-art methods in modeling molecular systems imply memory-
less (Markovian) latent space dynamics by selecting an appropriate time-lag
in the master equations (Buchete et al., 2008; Noé, Doose, et al., 2011). The
time-lag is usually estimated heuristically, balancing the requirements to
be large enough so that the Markovian assumption holds, and at the same
time small enough to ensure that the method samples the configuration
space efficiently. We remark that in cases where a protein interacts with a
solvent, only the configuration of the protein is taken into account and not
the solvent. This renders the Markovian assumption in the latent dynamics
somewhat unrealistic. Furthermore, in multiple cases in practice, the friction
extracted from molecular dynamics simulations exhibits significant memory
with a decay time that is in the nanosecond range and thus, of the same
order as the folding and unfolding time (Ayaz et al., 2021). This issue is
addressed here by employing probabilistic LSTM-RNNs (Hochreiter and
Schmidhuber, 1997) in the LED framework introduced in Chapter 6 that
capture memory effects of the latent dynamics. An LSTM has been used
in Tsai et al., 2020 in the form of a language model to learn non-Markovian
protein dynamics. The model they propose, however, requires discretization
of the state-space, is not generative, and does not identify a low-order latent
representation of the dynamics.

Here we propose a novel data-driven generative framework that relies
on learning the effective dynamics of molecular systems. As described
in Chapter 6, LED is founded on the Equation-Free Framework (Kevrekidis,
Gear, Hyman, et al., 2003). In this chapter, we show how the LED enriches
the EFF by employing ML methodologies to evolve the latent space dynam-
ics with the Mixture Density Network - Long Short-Term Memory RNN
(MDN-LSTM) and the two-way mapping between coarse and fine-scales
with Mixture Density Network Autoencoders (MDN-AEs) (Bishop, 1994).
These enrichments are essential in extending the applicability of EFF to
non-Markovian dynamics with probabilistic transitions on the latent space
with strong nonlinearities. We demonstrate the effectiveness of the LED
framework in simulations of the Müeller-Brown potential (MBP), the Trp
Cage miniprotein, and the alanine dipeptide in water. LED can accurately
capture the statistics and reproduce the free energy landscape from data.
Moreover, LED uncovers low-energy metastable states in the free energy
projected to the latent space and recovers the transition time scales between
them. We find that in simulations of the alanine dipeptide and the Trp Cage

140 led for molecular systems

miniprotein, LED is three orders of magnitude faster than the classical MD
solver. As a data-driven generative method, LED can sample novel unseen
configurations interpolating the training data and accelerating state-space
exploration.

This chapter is based on the paper “Accelerated Simulations of Molecular
Systems through Learning of Effective Dynamics” (P. R. Vlachas, Zavadlav,
et al., 2021). The computational resources were provided by a grant from
the Swiss National Supercomputing Centre (CSCS) under project s930.

7.2 methods

Here, we extend the LED framework introduced in Chapter 6 for molecular
systems. The LED framework is founded on the Equation-Free Framework
(EFF) (Kevrekidis, Gear, Hyman, et al., 2003). It addresses the critical
bottlenecks of EFF, namely, the coarse to fine mapping and the evolution of
the latent space using an MDN-AE and an MDN-LSTM, respectively. An
illustration of the LED framework is given in Figure 7.1.

In the following, the state of a molecule at time t is described by a high-
dimensional vector st ∈ Ω ⊆ Rds , where ds ∈ N denotes its dimension.
The state vector can include the atom positions or their rotation/translation-
invariant features obtained using, for example, the Kabsch transform (Kab-
sch, 1976). A trajectory of this system is obtained by an MD integrator and
the state of the molecule after a timestep ∆t is described by the probability
distribution function (PDF):

p(st+∆t|st). (7.1)

The transition distribution in Equation 7.1 depends on the choice of ∆t.

7.2.1 Mixture Density Network Autoencoder

Here, the MDN-AE identifies the latent (coarse) representation and upscales
it probabilistically to the high-dimensional state-space. MDNs (Bishop,
2006) are neural architectures that can represent arbitrary conditional dis-
tributions. The MDN output is a parametrization of the distribution of a
multivariate random variable conditioned on the network’s input.

The latent state is computed by zt = E(st; wE), where E is the encoder
(a deep neural network) with trainable parameters wE and zt ∈ Rdz with

7.2 methods 141

dz � ds. Since zt is a coarse approximation, many states can be mapped
to the same zt. As a consequence, a deterministic mapping zt → st like
the one used in Mardt et al., 2018; Wehmeyer et al., 2018 does not provide
the full distribution p(st|zt). Here, an MDN is employed to model the
upscaling conditional PDF p(st|zt) described by the parameters ws|z. These
parameters are the outputs of the decoder with weights wD and are a
function of the latent representation zt, i.e.

ws|z(zt) = D(zt; wD). (7.2)

The state of the molecule can then be sampled from p(st|zt) := p(st; ws|z).

Arguably, including the rotation/translation-invariant features of the
molecule under study in the state st, encourages the MDN to sample
physically meaningful molecular configurations. The state st is composed
of states representing bond lengths sb

t ∈ Rdb
s , and angles sa

t ∈ Rda
s . Initially,

the MD data of the bonds are scaled to [0, 1]. An auxiliary variable vector
vt ∈ Rdb

s is defined to model the distribution of bonds. In particular, p(vt|zt)
is modeled as a Gaussian mixture model with Ks mixture kernels as

p(vt|zt) =
Ks

∑
k=1

πk
v(zt)N

(
µk

v(zt), σk
v(zt)

)
, (7.3)

and the mapping sb
t = ln(1 + exp(vt)) is used to recover the distribution of

the scaled bond lengths at the output. The functional form of the mixing
coefficients πk

v(zt), the means µk
v(zt), and the variances σk

v(zt) is a deep
neural network (decoder D). The distribution of the dihedral angles is
modeled with the circular normal (von Mises) distribution, i.e.

p(sa
t |zt) =

Ks

∑
k=1

πk
sa(zt)

exp
(

νk
sa(zt) cos

(
sa

t − µk
sa(zt)

))

2π I0
(
νk

sa(zt)
) , (7.4)

where I0(ν
k
sa) is the modified Bessel function of order 0. Here, again the

functional form of πk
sa(zt), µk

sa(zt) and νk
sa(zt) is a deep neural network

(decoder D).

In total, the outputs of the decoder D that parametrize p(st|zt) are

ws|z = {πk
v, µk

v, σk
v, πk

sa , µk
sa , νk

sa}k∈{1,...,Ks}, (7.5)

142 led for molecular systems

st−Tμ+Δt st−2Δt st st+Tm−Δt st+Tm

ENCODER ENCODER ENCODER

zt−Tμ+Δt zt−2Δt zt

RNN
MDN

RNN
MDN

RNN
MDNht−Δt

ht−Tμ

zt+Δt

RNN
MDN

RNN
MDN

zt+Δt

zt+2Δt

zt+Tm−Δt

s̃t+Tm

DECODER

MDN

zt+Tm

st−Δt

ENCODER

zt−Δt

RNN
MDNht−2Δt

Molecular dynamics for (water molecules ignored)Tμ + Tm

Encoding

to reduced
order latent

space

Teacher forcing the RNN for Tμ

Iterative propagation of the
latent dynamics for Tm

Probabilistic
decoding to high

dimensional
space

Tμ ≪ Tm

s̃t+Tm
∼ p(⋅ |zt+Tm

, zt+Tm−Δt, …)

zt+Δt ∼ p(⋅ |zt, zt−Δt, …)

Figure 7.1: High-dimensional (fine-scale) dynamics st are simulated for a short
period (Tµ). During this warm-up period, the state st is passed
through the encoder network. The outputs of the encoder zt pro-
vide the time series input to the LSTM, allowing for the update
of its hidden state ht, thus capturing non-Markovian effects. The
output of the LSTM is a parametrization of the probabilistic non-
Markovian latent dynamics p(zt|ht). Starting from the last latent
state zt, the LSTM iteratively samples p(zt|ht) and propagates the
low-order latent dynamics up to a total horizon of Tm time units,
with Tm > Tµ. The LED decoder may be utilized at any desired time
scale to map the latent state zt back to a high-dimensional repre-
sentation st ∼ p(·|zt, zt−∆t, . . .). Propagation in the low-order space
unraveled by LED is orders of magnitude cheaper than evolving the
high-dimensional system based on first principles (molecular dynam-
ics/density functional theory, etc.).

which are all functions of the latent state zt, which is the decoder input.
The MDN-AE is trained to predict the mixing coefficients maximizing the
data likelihood

wE , wD =arg max
wE ,wD

p(st|zt)

=arg max
wE ,wD

p
(
st; ws|z

)
,

(7.6)

where ws|z = D
(
E(st; wE); wD

)
is the output of the MDN-AE and st are

the MD data.

7.2 methods 143

7.2.2 Long Short-Term Memory Recurrent Neural Network

The latent dynamics may be characterized by non-Markovian effects, i.e.

p(zt+∆t|zt, zt−∆t, . . .),

due to the neglected degrees of freedom (solvent) or the selection of a
relatively small time-lag ∆t.

Here the LSTM cell architecture introduced in Section 2.1.4.2 is utilized to
evolve the nonlinear and non-Markovian latent dynamics. Here, we rewrite
the propagation in the LSTM cell given by:

ht, ct = Fhh
(
zt, ht−∆t, ct−∆t; wFhh

)
, (7.7)

where the hidden-to-hidden recurrent mapping Fhh takes the form given
in Equation 2.10. The dimension of the hidden state dh (number of hid-
den units) in the LSTM controls the capacity of the cell to encode history
information. The set of trainable parameters of the LSTM are given in Equa-
tion 2.11.

7.2.3 Mixture Density LSTM Network

The LSTM captures the history of the latent state and the non-Markovian
latent transition dynamics are expressed as:

p(zt+∆t|zt, zt−∆t, . . .) = p(zt+∆t|ht), (7.8)

where ht given in Equation 7.7. A second MDN is used to model the
conditional distribution p(zt+∆t|ht) of the latent transition dynamics. This
MDN is conditioned on the hidden state of the LSTM ht and implicitly
conditioned on the history, i.e., p(zt+∆t|zt, zt−∆t, . . .) := p(zt+∆t; wz|h), so
it can capture non-Markovian dynamics. The distribution p(zt+∆t|ht) is
modeled as a Gaussian mixture with Kz mixture kernels

p(zt+∆t|ht) =
Kz

∑
k=1

πk
z(ht)N

(
µk

z(ht), σk
z(ht)

)
, (7.9)

with parameters wz|h given by

wz|h(ht) = {πk
z(ht), µk

z(ht), σk
z(ht)}, (7.10)

144 led for molecular systems

that are a function of ht. These parameters are the outputs of the neural
network Z(ht; wZ), with trainable weights wZ , and are a function of the
hidden state, i.e.

p(zt+∆t|ht) := p(zt+∆t; wz|h),

wz|h(ht) = Z(ht; wZ).
(7.11)

The weights of the LSTM wFhh and the latent MDN wZ are trained to output
the parameters wz|h that maximize the likelihood of the latent evolution

wFhh , wZ = arg max
wFhh

,wZ
p
(
zt+∆t; wz|h

)
, (7.12)

where wz|h is defined in Equation 7.11, and ht appearing in Equation 7.11 is
defined in Equation 7.7. During the training phase, the MD trajectory data
st are provided at the input of the trained MDN-AE zt = E(st; wE). The
encoder outputs the latent dynamics zt that are used to update the hidden
state of the LSTM and optimize its weights according to Equation 7.12. In
contrast to the linear operator utilized in MSMs, the recurrent functional
form in Equation 7.7 can be nonlinear and incorporate memory effects via
the hidden state of the LSTM.

7.2.4 LED for Molecular Systems

The LED framework can be employed to accelerate MD simulations and
enable more efficient exploration of the state-space and uncovering of novel
protein configurations. The networks in LED are trained on trajectories from
MD simulations in two phases. First, the MDN-AE provides a reduced-order
representation, maximizing the data likelihood. The MDN-AE is trained
with Backpropagation (Rumelhart et al., 1986) using the adaptive stochastic
optimization method Adam (Kingma et al., 2014). Adding a pre-training
phase fitting the kernels µk, σk of the MDN-AE to the data, and fixing them
during MDN-AE training led to better results. Next, the MDN-LSTM is
trained to forecast the latent space dynamics (the MDN-AE weights are
considered fixed) to maximize the latent data likelihood. MDN-LSTM is
trained with BPTT (P. J. Werbos, 1988) with Adam optimizer.

The LED propagates the computationally inexpensive dynamics on its
latent space. Starting from an initial state from a test dataset (unseen during
training), a short time history Tµ of the state evolution is utilized to warm-
up the hidden state of the LED. The MDN-LSTM is used to propagate
the latent dynamics for a time horizon Tm � Tµ. High-dimensional state

7.3 results 145

configurations can be recovered at any time instant by using the probabilistic
decoder part of MDN-AE. We find that the LED framework can accelerate
MD simulations by three orders of magnitude.

The LED is implemented in Python (Van Rossum et al., 1995) in the
Pytorch (Paszke et al., 2019) library, mapped to a single Nvidia Tesla
P100 GPU, and executed on the XC50 compute nodes of the Piz Daint
supercomputer at the Swiss national supercomputing centre (CSCS).

7.3 results

The LED framework is tested in three systems, single-particle Langevin dy-
namics using the two-dimensional MBP, the Trp Cage miniprotein, and the
alanine dipeptide, widely adopted as benchmarks for molecular dynamics
modeling (Mardt et al., 2018; Müller et al., 1979; Nuske et al., 2014; Sidky
et al., 2020; Wehmeyer et al., 2018).

7.3.1 Müller-Brown Potential

The Langevin dynamics of a particle in the MBP are characterized by the
stochastic differential equation

mẍ(t) = −∇V
(

x(t)
)
− γẋ(t) +

√
2κBT R(t), (7.13)

where x ∈ R2 is the position, ẋ is the velocity, ẍ is the acceleration, V(x) is
the MBP (defined in Appendix E.1), κB is the Boltzmann’s constant, T is
the temperature, γ is the damping coefficient, and R(t) a delta-correlated
stationary Gaussian process with zero-mean. The nature of the dynamics is
affected by the damping coefficient γ. Low damping coefficients lead to an
inertial regime. High damping factors lead to a diffusive regime (Brownian
motion) with less prominent memory effects. Here, a damping γ = 1 is
considered, along with κBT = 15.

The equations are integrated with the Velocity Verlet algorithm with
timestep δt = 10−2, starting from 96 initial conditions randomly sampled
uniformly from x ∈ [−1.5, 1.2]× [−0.2, 2] till T = 104, after truncating an
initial transient period of T̃ = 103. The data are sub-sampled, keeping every
50

th data points to create the training and testing datasets for LED. The
coarse timestep of LED is ∆t = 0.5. We use 32 initial conditions for training,
32 for validation and all 96 for testing. LED is trained with a 1D reduced-
order latent representation zt ∈ R. The reader is referred to Appendix E.1

146 led for molecular systems

°2 °1 0 1 2
x1

°1

0

1

2

3

x
2

0

1

Brown-Müller Potential

°2.5

0.0

2.5

5.0

7.5

10.0

log p(x)

°2 °1 0 1
x1

°1

0

1

2
x

2

Brown-Müller Potential

3

4

5

6

7

log(V)

°2 °1 0 1 2
x1

°1

0

1

2

3

x
2

LED

°2.5

0.0

2.5

5.0

7.5

10.0

log p(x)

Brown-Müller Potential Reference LED

Figure 7.2: From left to right: the Müller-Brown potential, a scatter plot of the
joint state distribution computed from reference data (with annota-
tion of two long-lived metastable states), and the same scatter plot
obtained by LED sampled trajectories.

for further information regarding the MBP parameterization of Müller et al.,
1979 and in Appendix E.1.2 hyperparameters of LED.

The MBP is shown in Figure 7.2, along with a density scatter plot of the
joint distribution of the MBP states computed from the testing data and LED.
The potential has three minima. The potential value around the middle one,
however, is more than one order of magnitude higher than the other two
and lies very close to the one on the right (see Figure 7.2 left and middle).
The joint distribution reveals two dominant long-lived metastable states that
correspond to the two dominant low-energy regions. The local minimum
in the middle is not clearly distinguishable. The LED learns to transition
probabilistically between the metastable states, mimicking the system’s
dynamics and reproducing the state statistics. We note, however, that the
LED cannot distinguish the region of the local minimum in the middle as a
separate metastable state (Figure 7.2, right). As LED relies on reducing the
dimensionality of the state, projecting to a very low-order space, it captures
only the large-scale (coarse) characteristics. This dimensionality reduction
is essential for the acceleration that LED provides for large molecular
systems. In turn, as a consequence of this dimensionality reduction, a “weak”
metastable state region (local minimum, but high potential compared to
other nearby minima) that lies close to a dominant one of much lower
potential value can be missed (or be absorbed to the nearby regions).

The free energy projected on the latent space, i.e., F = −κBT log p(zt)
is plotted in Figure 7.3. The free energy profile of the trajectories sampled
from LED matches closely the one from the reference data with an RMSE
between the two free energy profiles of ≈ 0.74κBT . LED reveals two minima
in the free energy profile. As noted before, the third local minima of the

7.3 results 147

BMP is absorbed by the dominant one close to it. Even though LED cannot
distinguish the third local minima, the projected free energy profile is
reproduced. Utilizing the LED decoder, the latent states in these regions
are mapped to their image in the two-dimensional state representation
st ∈ R2 (here corresponding to xt ∈ R2) in Figure 7.3. LED is mapping the
low-energetic regions in the free energy profile to the long-lived metastable
states in the two-dimensional space of the MBP.

°7.5 °5.0 °2.5 0.0 2.5 5.0
z

1

2

3

4

5

6

F
/∑

B
T

MD

LED Iterative

°2.0 °1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0
x1

°1.0

°0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
2

Brown-Muller Potential

0

100

200

300

400

500

p(x)

°2.0 °1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0
x1

°1.0

°0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
2

Brown-Muller Potential

0

1000

2000

3000

4000

5000

6000

7000

8000

p(x)

Reference
LED

Figure 7.3: Middle: free energy profile projected on the latent space learned by
the LED encoder, i.e., F = −κBT ln p(zt). The free energy profile
computed by LED (propagation of the latent dynamics with LED)
matches closely the one from the reference data. Quantitatively, the
RMSE is 0.74κBT . LED recovers two low-energy regions that are
mapped to the two long-lived metastable states (left and right) in the
two-dimensional state-space st ∈ R2.

The marginal distributions of the MBP states from trajectories sampled
from the LED is compared with the ground-truth (test data) in Figure 7.4.

Next, we evaluate the LED framework in reproducing the transition
times between the long-lived states. In LED, metastable states can be de-
fined either on the reduced-order latent space zt ∈ R or the state-space
st ∈ R2 (as the decoder can map any latent state to a state-space). In the
following, two metastable states are defined as ellipses on the state-space
(see Appendix E.1.1) and depicted in Figure 7.2. The time scales will vary
depending on the definition of the metastable states in the phase space. The
distribution of transition times computed from LED trajectories is compared
with the transition time distribution from the test data in Figure 7.5. LED
captures the transition time distributions quantitatively, and the mean val-
ues are close to each other. In Appendix E.1.3, we also report the transition
times obtained with metastable states definition on the latent space. This
approach has the benefit that it does not require prior knowledge about the
metastable states in the state-space. In conclusion, LED captures the joint
state distribution on the MBP and matches the timescales of the system.

148 led for molecular systems

−2 −1 0 1
x1

0.0

0.5

1.0

1.5

2.0

f x
1
(x

1
)

Target Density Predicted Density

0 1 2
x2

0.0

0.5

1.0

1.5

2.0

f x
2
(x

2
)

Target Density Predicted Density

Figure 7.4: Comparison of the marginal distributions of the MBP states x1 and x2
between the test data and trajectories of LED. The LED is propagating
the dynamics on a 1D reduced-order latent state, i.e., dz = 1.

0 200 400 600 800
Transition times

0

100

200

300

400

500

C
ou

nt
s

Histogram of T0→1, ∆t = 0.5

Reference: max(T) = 832, mean(T) = 61, N=680

LED: max(T) = 1122, mean(T) = 91, N=740

0 250 500 750 1000
Transition times

0

50

100

150

200

C
ou

nt
s

Histogram of T1→0, ∆t = 0.5

Reference: max(T) = 1132, mean(T) = 188, N=601

LED: max(T) = 1027, mean(T) = 164, N=525

Figure 7.5: The distribution of the transition times learned by LED (blue), com-
puted from sampled trajectories, matches the original fine-scale tran-
sition times of the MBP dynamics (green). Left: Histogram of T0→1.
Mean T0→1 of MD trajectories is 61, mean T0→1 = 91 for LED. Right:
Histogram of T1→0. Mean T1→0 of MD trajectories is 188, mean
T1→0 = 164 for LED. LED has learned to propagate the effective
dynamics (a 1D latent state z) and capture the non-Markovian effects.

7.3.2 Trp Cage

The Trp-cage is considered a prototypical miniprotein for the study of pro-
tein folding (Sidky et al., 2020). The protein is simulated with MD (Guzman
et al., 2019) with a timestep δt = 1fs, up to a total time of T = 100ns. The

7.3 results 149

data is sub-sampled at ∆t = 0.1ps, creating a trajectory with N = 106 sam-
ples. The data is divided into 248 sequences of 4000 samples (T = 400ps
each). The first 96 sequences are used for training (corresponding to 38.4ns),
the subsequent 96 sequences for validation, while all the data is used for
testing.

The protein positions are transformed into rototranslational invariant
features (internal coordinates), composed of bonds, angles, and dihedral
angles, leading to a state with dimension ds = 456. LED is trained with a
latent space zt ∈ R2, i.e., dz = 2. LED is tested by starting from the initial
condition in each of the 248 test sequences, iteratively propagating the latent
space to forecast T = 400ps. For more information on the hyperparameters
of LED, refer to Appendix E.2.1.

The projection of MD trajectory data to LED latent space is illustrated
in Figure 7.6 left, in the form of the free energy, i.e., F = −κBT log p(zt),
with zt = (z1, z2)

T ∈ R2. The free energy on the latent space computed
from trajectories sampled from LED is given in Figure 7.6 on the right.
LED successfully captures the three metastable states of the Trp Cage
miniprotein, while being three orders of magnitude faster than the MD
solver. Quantitatively, the two profiles agree up to an error margin of
approximately 22.5κBT . In Appendix E.2.2, we provide additional results
on the agreement of the marginal state distributions, and realistic samples
of the protein configuration sampled from LED in Figure E.2.

°15 °10 °5 0 5
z1

°10.0

°7.5

°5.0

°2.5

0.0

2.5

5.0

7.5

z 2

°20 °15 °10 °5 0 5
0

5

°
lo

g
p

(z
1
)

0 5
° log p (z2)

°10

°5

0

5

6 12 18 24
F/∑BT

°15 °10 °5 0 5
z1

°10.0

°7.5

°5.0

°2.5

0.0

2.5

5.0

7.5

z 2

°20 °15 °10 °5 0 5
0

5

°
lo

g
p

(z
1
)

0 5
° log p (z2)

°10

°5

0

5

6 12 18 24
F/∑BT

LEDReference

Figure 7.6: Free energy projection on the latent space F = −κBT log p(zt), with
zt ∈ R2. Left: MD data projected to the LED latent space. Right: the
free energy of trajectories sampled from LED. LED is capturing the
free energy profile.

150 led for molecular systems

7.3.3 Alanine Dipeptide

The alanine dipeptide is often used as the testing ground for enhanced
sampling methods (McCarty et al., 2017). LED is evaluated in learning and
propagating the dynamics of alanine dipeptide in water. The molecule is
simulated with MD (Guzman et al., 2019), and the same data acquisition
procedure with Trp-cage in Section 7.3.2 is used (δt = 1fs, N = 106, ∆t =
0.1ps, 96 trajectories for training, 96 for validation). LED is tested by starting
from the initial condition in each of the total 248 test trajectories, iteratively
propagating the latent dynamics to forecast T = 400ps. This testing is
repeated 5 times with a different random seed, producing data equivalent
to T = 496ns in total.

The dipeptide positions are transformed into rototranslational invariant
features (internal coordinates), composed of bonds, angles, and dihedral
angles, leading to a state with dimension ds = 24. In order to demonstrate
that LED can uncover the dynamics in a drastically reduced-order latent
space, the dimension of the latter is set to one dz = 1, i. e. zt ∈ R. For more
information on the hyperparameters of LED, refer to Appendix E.3.2.

The metastable states of the dynamics are represented in terms of the
energetically favored regions in the state-space of two backbone dihedral an-
gles, φ and ψ, i.e., the Ramachandran space (Ramachandran, 1963) plotted
in Figure 7.7. Specifically, previous works consider five low-energy clus-
ters, i.e., {C5, PI I , αR, αL, Cax

7 }. The trained LED is qualitatively reproducing
the density in the Ramachandran plot in Figure 7.7, identifying the three
dominant low-energy metastable states {C5, PI I , αR}. LED, however, fails
to capture the state density on the less frequently observed states in the
training data {αL, Cax

7 }. The marginal distributions of the trajectories gener-
ated by LED match the ground-truth ones (MD data) closely, as depicted in
Figure S4.

Even though LED is propagating a 1D latent state, once trained, it can
reproduce the statistics while being three orders of magnitude faster than
the MD solver.

The free energy is projected to the latent space, i.e., F = −κBT ln(p(zt)),
and plotted in Figure 7.8. The free energy projection computed from MD
trajectories (train and test data) is compared with the one computed from
trajectories sampled from the LED. We estimate the mean free energy profile
and the associated standard error of the mean (SEM) using 96 splits of the
data. The free energy profile of LED agrees with the reference (test data)

7.3 results 151

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

100

102

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

100

102

Reference LED

Figure 7.7: Ramachandran plot of the alanine dipeptide, i.e., space spanned by
two backbone dihedral angles (φ, ψ). Scatter plots are colored based
on the joint density of (φ, ψ). Left: test data. Right: LED trajectories.
We observe five energetically favorable metastable states denoted with
{C5, PI I , αR, αL, Cax

7 }. LED captures the three dominant metastable
states {C5, PI I , αR, }. The states {αL, Cax

7 } are rarely observed in the
training data.

up to an RMSE of 0.25κBT . The profile estimated from the training data
exhibits a slightly higher error 1.22κBT , and higher SEM. Note that LED
unravels three dominant minima in the latent space. These low-energy
regions correspond to metastable states of the dynamics.

The Ramachandran space (φ, ψ) is frequently used to describe the long-
term behavior and metastable states of the system (Trendelkamp-Schroer et
al., 2016; Wehmeyer et al., 2018). The latent encoding of the LED is evaluated
based on the mapping between the latent space and the Ramachandran
space. Utilizing the MDN decoder, the LED can map the latent state z to
the respective rototranslational invariant features (bonds and angles) and
regions in the Ramachandran plot. As illustrated in Figure 7.8, the LED
is mapping the three low-energy regions in the latent space to the three
dominant metastable states in the Ramachandran plot {C5, PI I , αR}.

Next, we evaluate LED’s effectiveness in unraveling novel protein config-
urations (state-space) absent from the training data. For this purpose, we
create four different small datasets composed of trajectories of the protein,
each one not including one of the metastable states {C5, PI I , αR, Cax

7 }. This is
done by removing any state closer than 40 degrees to the metastable states’
centers. In this way, we guarantee that LED has not seen any state close
to the metastable state missing from the data. Note that in this case, the

152 led for molecular systems

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

0

200

400

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

0

1000

2000

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

0

500

1000

°5 0 5
z

0

10

F
/∑

B
T

αR C5 PII

LED
Reference (test data)
Train data

Figure 7.8: Plot of the free energy profile projected on the latent state learned
by the LED, i.e., F = −κBT ln p(zt). The latent free energy profile
of MD trajectories is compared with the latent free energy profile
of trajectories sampled from the LED. The two profiles agree up
to an RMSE of 2κBT . Utilizing the LED decoder, the low-energy
regions in the latent space (close to the minima) can be mapped
to the corresponding protein configurations and metastable states
in the Ramachandran plot. The LED uncovers the three dominant
metastable states {C5, PI I , αR} in the free energy surface (minima).
The LED captures the free energy profile and the dominant metastable
states while being computationally three orders of magnitude cheaper
than MD.

LED is not trained on a single large MD trajectory but on small trajectories
that are not temporally adjacent. We end up with four datasets, each one
consisting of approximately 800 trajectories of length T = 50ps (500 steps
of 0.1 ps). Each dataset covers approximately 40ns protein simulation time.
These datasets are created to evaluate the effectiveness of LED in generating
truly novel configurations for faster exploration of the state-space. We do
not care in this case for accurate reproduction of the statistics due to the
minimal data used for training. In Figure 7.9, we plot the Ramachandran
plots of the training data along with the ones obtained by analyzing the
trajectories of the trained LED models in each of the four cases. We observe
that the LED can unravel the metastable states PI I , C5, Cax

7 , and αR, even
though they were not part of the training data. However, by removing states

7.3 results 153

°100 0 100
¡

°100

0

100

√

PII
C5

ÆR

ÆL

Cax
7

Cax
7

Training Data

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

PII
C5

ÆR

ÆL

Cax
7

Cax
7

Training Data

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

PII
C5

ÆR

ÆL

Cax
7

Cax
7

Training Data

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

PII
C5

ÆR

ÆL

Cax
7

Cax
7

Training Data

10°1

101

103

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

Predicted Density

10°2

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

Predicted Density

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

Predicted Density

10°1

100

101

102

103

°100 0 100
¡

°100

0

100

√

C5 PII

ÆR

ÆL

Cax
7

Cax
7

Predicted Density

10°1

100

101

102

103

REMOVING PII

REMOVING αR

REMOVING C5

REMOVING Cax
7

Figure 7.9: LED is trained in four scenarios hiding data that lie closer than 40

degrees to one of the metastable states {PI I , C5, αR, Cax
7 } each time.

LED can successfully generate novel probable configurations close
to the metastable states {PI I , C5, αR, Cax

7 }. Due to the limited training
data, however, capturing the state density in the Ramachandran plot
is challenging.

that lie close to the metastable state αR, the LED cannot capture the αR and
Cax

7 metastable states. This is because the LED is trained on only a small
subset of the training dataset and the transitions to these metastable states
are rare.

The dynamics learned by LED are evaluated according to the mean first-
passage times (MFPTs) between the dominant metastable states. The MFPT
is the average time scale to reach a final metastable state, starting from
any initial state. The MFPTs are computed a posteriori from trajectories
sampled from the LED and the MD test trajectories, using the PyEMMA
software (Scherer et al., 2015). The metastable states considered here are
given in the Supporting Information.

As a reference for the MFPTs, we consider an MSM fitted to the MD data
(test dataset). The reference MFPTs agree with previous literature (Chek-
marev et al., 2004; Jang et al., 2006; Trendelkamp-Schroer et al., 2016; H.
Wang et al., 2014). The time-lag of the MSM is set to ∆tMSM = 10ps to
ensure the necessary Markovianity of the dynamics. This time-lag is two
orders of magnitude larger than the timestep of LED. Fitting an MSM with
a time-lag of ∆tMSM = 1ps on the MD data results in very high errors
(≈ 85% on average) in the computation of MFPTs. This emphasizes the

154 led for molecular systems

need for non-Markovian models that can reproduce the system’s dynamics
and statistics independent of the selection of the time-lag.

The MFPTs of trajectories sampled from LED are estimated with an MSM
with a time-lag ∆tMSM = 10ps. We consider 1232 trajectories sampled
from LED, split them into 32 groups, and report the mean MFPT and
the associated standard error of the mean (SEM). Note that the LED is
operating on a timestep ∆t = 0.1ps. The MFPTs are identified with a low
average relative error of 8.41%. The results on the MFPTs are summarized
in Table 7.1. LED captures very well the transitions that are dominant in the
data e. g. TPI I→C5 , or TαR→C5 . In contrast, LED exhibits higher MFPT errors
in transitions that are less dominant in the training data.

LED identifies the dominant MFPTs successfully by utilizing a very small
amount of training data (38.4ns for training and 38.4ns validation) and
propagating the latent dynamics on a reduced-order space (dz = 1). LED
trajectories are three orders of magnitude cheaper to obtain compared to
MD data. As multiple trajectories (here 1232) can be sampled from LED at
a fraction of the computational cost of MD, the SEM in the estimation of
the MFPTs is small.

At the same time, MSM fitting is a relatively fast procedure once the
clustering based on the metastable states is obtained. In contrast, a careless
selection of the time-lag in the MSM that fails to render the dynamics
Markovian (e. g. ∆t = 1ps) leads to a surrogate model that fails to capture
the system time scales. This emphasizes the need to model non-Markovian
effects with LED in case of limited data sampled at a high frequency (small
timesteps ∆t). A more informative selection of the time-lag may alleviate
this problem, rendering the dynamics Markovian as in the reference MSM.
Still, the consequent sub-sampling of the data can lead to omissions of
effects whose time scales are smaller than the time-lag. Consequently, the
heuristic selection of the time-lag is rendering the modeling process error-
prone. In Appendix E.3.4 we provide additional results on the MFPTs
estimated based on metastable state definition in the latent space of LED
(without prior knowledge).

If the metastable states are known a priori, or a latent state is available
(e. g. from a trained Autoencoder or any other method to unravel collective
variables), the MFPTs are represented in, and can be computed directly
from the training data, (Table 7.1, 8 splits of the trajectories from the training
dataset considered). The SEM, however, is large due to the limited amount
of data. We note that LED is not expected to reproduce accurately transitions
that are not present in the training data.

7.4 discussion 155

MFPT
MSM− 10ps MSM− 1ps MSM− 10ps MSM− 10ps
on MD data on MD data on MD train data on LED− 0.1ps data

[ns] Reference MFPT Error (%) MFPT±SEM Error (%) MFPT±SEM Error (%)

TC5→PII
0.112 0.017 84 0.123± 0.013 9 0.094±0.002 16

TC5→αR
0.096 0.014 86 0.107± 0.012 11 0.093±0.003 4

TPII→C5 0.238 0.038 84 0.242± 0.021 2 0.218±0.005 8
TPII→αR

0.098 0.014 86 0.109± 0.012 11 0.093±0.003 5
TαR→C5

0.247 0.038 85 0.251± 0.021 1 0.232±0.005 6
TαR→PII

0.124 0.018 86 0.134± 0.014 8 0.110±0.002 11

Average Relative Error 85.01% 6.99% 8.41%

Table 7.1: Mean first-passage times (MFPTs) between the metastable states of
alanine dipeptide in water in [ns]. MFPTs are estimated by fitting
MSMs with different time-lags (10ps and 1ps) on trajectories generated
by MD, or the LED framework. The average relative error is given for
reference.

LED utilizes 76ns of MD data for training, generated with the MD solver
in approximately 10 days. The total training time of LED is approximately 20
hours. The trained model can generate 12µs of MD data per day, while with
MD we can generate approximately 7.8ns per day. In order to acquire the
T = 496ns total data used in this case for statistics with MD we would need
approximately 64 days. By training the LED (20 hours) on data acquired
from MD (10 days) and then sampling multiple trajectories (4 hours) in
parallel, we can acquire the same amount of data in 11 days. A realistic
speed-up estimation, taking into account data acquisition and training, is
thus 3. For a larger protein, this speed-up is expected to be higher.

7.4 discussion

In this chapter, we extended LED for molecular systems. We presented a
data-driven framework to learn and propagate the effective dynamics of
molecular systems resulting in dramatically accelerated MD simulations.
The LED maximizes the data likelihood for a continuous reduced-order
latent representation. The nonlinear dynamics are propagated in the latent
space, and the memory effects are captured through the hidden state of
the LSTM. Moreover, the method is generative, and the decoder part of
the MDN-AE can be employed to sample high-dimensional configurations
on any desired time scales. This is in contrast to previous state-of-the-art
methods based on the Markovian assumption on the latent state or the
minimization of the autocorrelation or the variational loss on the data.

156 led for molecular systems

These approaches take into account the error on the long-term equilibrium
statistics explicitly to capture the system time scales but suffer from a
dependency on the batch-size (Hernández et al., 2018).

The encoder of LED is analogous to the coarse-graining model design,
while the decoder is implicitly learning a backmapping to atomistic config-
urations. The LED automates the dimensionality reduction often associated
with the empirical a priori selection of Collective Variables in molecular sim-
ulations (Maragliano et al., 2006; Wehmeyer et al., 2018). At the same time,
the MDN-LSTM propagates the dynamics on the latent space in a form that
is comparable to nonlinear, non-Markovian metadynamics (McCarty et al.,
2017).

The effectiveness of LED is demonstrated in simulations of three systems.
In Langevin dynamics using BMP, LED recovers the free energy landscape
in the latent space, identifies two low-energetic states corresponding to the
long-lived metastable states of the potential, and captures the transition
times between the metastable states. In the Trp Cage miniprotein, LED
captures the free energy projection on the latent space and unravels three
metastable states. Finally, for the system of alanine dipeptide in water,
LED captures the configuration statistics of the system accurately while
being three orders of magnitude faster than MD solvers. Moreover, it
identifies three low-energetic regions in the free energy profile projected
to the 1D latent state that corresponds to the three dominant metastable
states {αR, C5, PI I}. LED also captures the dominant mean first-passage
times in contrast to the MSM operating on the same time scale, owing to the
non-Markovian latent propagation in the latent state with the MDN-LSTM.
Furthermore, we showcase how our framework is capable of unraveling
novel protein configurations interpolating on the training data.

We note that the speed-up achieved by LED depends on the MD solver
used, the dimensionality, and the complexity of the protein under study.
While extrapolating estimates to systems not yet tested requires caution,
our evidence suggests that the computationally efficient propagation in the
latent space of the LED will always provide dramatic accelerations over
molecular simulations. Further acceleration can be accomplished by cou-
pling LED and MD solvers in different domain parts for faster exploration
of the state-space.

We believe that LED paves the way for faster exploration of the conforma-
tional space of molecular systems. More research efforts are needed to target
the application of LED to larger proteins and investigate its capabilities in
uncovering the metastable states in the free energy profile.

8
C O N C L U S I O N A N D O U T L O O K

8.1 conclusions

This thesis has focused on developing and applying supervised deep learn-
ing methods to spatio-temporal chaotic dynamics and complex multiscale
systems, from fluid flows to molecules.

Coupling an LSTM-RNN with a Mean Stochastic Model

Previous approaches on forecasting chaotic dynamics with neural net-
works (Broomhead et al., 1988; L. Cao et al., 1995; Jaeger et al., 2004; La-
pedes et al., 1987; Rico-Martinez et al., 1992) have been limited to low-order
systems or assume partial knowledge of the underlying dynamics and are
not based solely on data (Pathak, Wikner, et al., 2018). We developed a
data-driven method based on LSTM networks to model and forecast high-
dimensional dynamical systems. The LSTM predicts the reduced space
dynamics (identified by a dimensionality reduction method) of chaotic
dynamical systems. The method is applied to the KS equation, the Lorenz
96 system, and a barotropic climate model. The proposed method is bench-
marked against GPR, demonstrating higher predictive accuracy and better
scaling performance, as it can be trained efficiently with large amounts of
data. We argue that the higher short-term predictive accuracy of the LSTM
is attributed to its ability to capture nonlinear correlations between modes
in the reduced-order space. GPR assumes Gaussian correlations between
the modes, and each mode is modeled independently.

Moreover, a challenging problem in forecasting chaotic systems is that
densely sampling the attractor can be computationally challenging or im-
possible (e. g. climate). Data near the attractor boundary can be scarce. The
predictions of the LSTM in undersampled regions of the attractor can be
wildly inaccurate and lead to high errors (unphysical/unrealistic predic-
tions) in iterative forecasting. We couple the LSTM with a mean stochastic
model (MeSM) to tackle this issue. The LSTM learns the local dynamics
accurately, while the MeSM captures the global attractor statistics. Blending

157

158 conclusion and outlook

LSTM or GPR with MeSM leads to a slight deterioration in the short-term
prediction performance, but the steady-state statistical behavior is captured.
The hybrid LSTM-MeSM exhibits superior performance than GPR-MeSM
in all systems considered in this study.

As the intrinsic attractor dimensionality in the KS is lower than Lorenz
96 in the dynamical regime considered in this work, the LSTM can better
capture the local dynamics. Even though the LSTM accurately captures the
local dynamics, especially in the chaotic regime 1/ν = 16, forecasts of LSTM
fly away from the attractor. This effect is alleviated by the coupled LSTM-
MeSM method, which makes sure that the error converges to the invariant
measure. We show that LSTM and GPR show comparable forecasting
accuracy in the barotropic model, and both methods can effectively capture
the dynamics.

The proposed framework is entirely data-driven and can be employed in
very high-dimensional, fully turbulent dynamical systems, where densely
sampling the state space is difficult, extending the applicability of RNNs to
challenging forecasting problems.

Training Algorithms and Scalability of RNNs for Dynamical Systems

Although RNNs are powerful algorithms for modeling dynamical systems,
fitting these networks to data is difficult due to the vanishing gradients
problem (Hochreiter, 1998). In order to tackle this issue, multiple alterations
in the architecture of the RNN cell have been proposed like the long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) cell, the
Gated Recurrent Unit (GRU) (Cho et al., 2014; Chung, Gulcehre, et al.,
2014), and the Unitary recurrent unit (Arjovsky et al., 2016; Jing et al.,
2017). These networks are trained with BPTT. A different perspective is
adopted in the Reservoir Computing paradigm, where the architecture of
the network cell is kept simple, but the training algorithm is changed to
least squares regression on the output weights only. The internal weights
of the network are fixed, creating a reservoir of dynamics in an attempt
to surpass the vanishing gradients problem by design. Previous works
on gated architectures trained with BPTT and RC (apart from some very
recent works in RC (Pathak, Hunt, et al., 2018; Pathak, Lu, et al., 2017))
have been limited in low-order systems. Moreover, the architectures have
not been analyzed adequately and benchmarked extensively in the context
of spatio-temporal chaos. We presented a comparative study based on the

8.1 conclusions 159

efficiency of the networks in capturing temporal patterns and scalability to
high-dimensional spatio-temporal dynamics. We distinguish two scenarios,
one where the complete state of the system is observed and one where the
data manifest only a part of the system state (reduced-order information).
The methods are benchmarked in the Lorenz 96 system and the Kuramoto-
Sivashinsky equation. We demonstrate that gated architectures exhibit
higher forecasting accuracy in the challenging reduced-order scenario, while
RC is more prone to divergence of the iterative forecasting error. Moreover,
we find that the measures against overfitting in the gated architectures
(validation-based early stopping, Zoneout (Krueger et al., 2017), Dropout)
are more effective than those used in RC (Tikhonov regularization), as RC
models tend to overfit easier. This finding emphasizes the need for more
effective mechanisms to guard against overfitting in RC. In the case of full-
order information of the state, RC exhibits excellent forecasting accuracy
outperforming all other models while reproducing the frequency spectrum
of the underlying dynamics.

The scalability of RNNs and RC to very high-dimensional problems is
hindered because the required hidden state to capture the dynamics can
become large, rendering the training process prohibitively slow or com-
putationally expensive. We tackle this issue by designing a parallelization
scheme that exploits the local interactions in the state of a dynamical sys-
tem. Parallelized RNNs reproduced the long-term attractor climate and
the power spectrum of the state in the high-dimensional Lorenz 96 system
and the Kuramoto-Sivashinsky equation. Further, we demonstrated that
a trained gated architecture can be employed to identify the positive part
of the Lyapunov Spectrum of a high-dimensional spatio-temporal chaotic
dynamical system accurately in a data-driven manner.

In conclusion, recurrent neural networks for data-driven surrogate mod-
eling and forecasting of chaotic systems can be used efficiently to model
high-dimensional dynamical systems and can be parallelized, alleviating
scaling problems. Consequently, we argue that they constitute a promising
research subject that requires further analysis.

Scheduled Autoregressive Backpropagation Through Time

Autoregressive forecasting with RNN architectures suffers from the iterative
propagation of the prediction error. An expensive computational alternative
is to train a different model for each lead time Rasp et al., 2020, instead

160 conclusion and outlook

of employing RNNs. This, however, can be prohibitive in practice. Back-
propagation through time (BPTT) with teacher-forcing employed to train
recurrent architectures in most previous works (Geneva et al., 2020; Kumar
et al., 2020; Su et al., 2020; Wiewel et al., 2019) is biased towards a one step
ahead prediction loss. We propose a scheduled autoregressive variant of
BPTT (BPPT-SA) to alleviate this problem by considering the autoregressive
error during training. We benchmark the proposed method against BPTT
and a schedule sampling approach in low-dimensional time series problems
and the viscous flow past a cylinder in a channel. BPTT-SA shows superior
long-term predictive performance without increasing the training cost in
ConvRNN and CNN-RNN architectures. The proposed method applies
to any recurrent model and can be of great practical help in applications
where long-term forecasting is desirable, but retraining one model for each
lead time is computationally prohibitive.

Multiscale Simulations of Complex Systems by LED

The scientific importance of multiscale simulations led to the development
of multiple potent multiscale algorithms. The scalability of these meth-
ods to high-dimensional, complex dynamics has been hindered by the
difficulties in the design of accurate data-driven “lifting” operators to re-
cover the full state description from the low-order one, and timestepping
routines to capture the nonlinear (coarse-grained) latent dynamics. We
augmented the Equation-Free Framework (EFF) with ML models to learn
the effective dynamics (LED) and accelerate the simulations of multiscale
complex dynamical systems, alleviating the pittfalls of previously proposed
approaches and extending the applicability of multiscale algorithms to
high-dimensional nonlinear problems.

The efficiency of LED was evaluated in propagating the FitzHugh-
Nagumo model dynamics, achieving an order of magnitude lower ap-
proximation error compared to state-of-the-art Equation-Free approaches
while being two orders of magnitude faster than the micro-scale (Lattice
Boltzmann) solver. We demonstrated that the proposed framework iden-
tifies the effective dynamics of the Kuramoto-Sivashinsky equation with
L = 22, capturing the long-term statistics of the attractor and achieving a
speed-up of S ≈ 100. Furthermore, LED accurately captures the long-term
dynamics of a flow past a cylinder in Re = 100 and Re = 1000, while being
two orders of magnitude faster than the utilized flow solver.

8.1 conclusions 161

LED identifies and propagates the effective dynamics of dynamical sys-
tems with multiple spatio-temporal scales providing significant compu-
tational savings. Moreover, the proposed method provides a systematic
way of trading between speed-up and accuracy for a multiscale system by
switching between the propagation of the latent dynamics and evolution of
the original equations, iteratively correcting the statistical error at the cost
of reduced speed-up. The proposed methodology can be deployed both in
problems described by first principles and for problems where only data
are available for the system’s macro or micro-scale descriptions.

In summary, LED creates unique algorithmic alloys between data-driven
and first principles models and opens new horizons for the accurate and
efficient prediction of complex multiscale systems.

Accelerating Molecular Simulations by LED

In this chapter, we couple Mixture Density Networks (MDNs) with LSTMs
to model the probabilistic latent space dynamics of molecular systems. In
this way, we extended LED for molecular dynamics to alleviate the lim-
itations of previous data-driven Markovian approaches. LED learns and
propagates the effective dynamics of molecular systems resulting in dramat-
ically accelerated MD simulations. The proposed method is generative, and
the decoder can be employed to sample high-dimensional molecular config-
urations on any desired time scale. The efficiency and efficacy of LED in
capturing the statistics, kinetics, and timescales are demonstrated on three
systems, particles moving on the BMP with Langevin dynamics, the dy-
namics of alanine dipeptide, and the Trp Cage miniprotein. In the first case,
LED reproduces the free energy landscape in the latent space, identifies
two low-energetic states corresponding to the long-lived metastable states
of the potential, and captures the transition times between the metastable
states. In the Trp Cage miniprotein, LED reproduces the free energy pro-
jection on the latent space and uncovers three metastable states. In alanine
dipeptide in water, LED captures the configuration statistics of the system
accurately while being three orders of magnitude faster than MD solvers.
Moreover, LED identifies three low-energetic regions in the free energy pro-
file projected to the 1D latent state. These regions correspond to the three
dominant metastable states {αR, C5, PI I}. LED can capture the dominant
mean first-passage times in contrast to the MSM operating on the same time
scale. This is due to the ability of LED to learn non-Markovian dynamics by
the MDN-LSTM on the latent space. Last but not least, we demonstrate that

162 conclusion and outlook

LED can unravel novel protein configurations interpolating on the training
data.

Although extrapolating to dynamical regions undersampled in the train-
ing data with LED requires further attention, we demonstrate that the
computational savings due to LED’s efficient latent space propagation dra-
matically accelerates molecular simulations. For this reason, we argue that
LED paves the way for faster exploration of the conformational space of
molecular systems.

8.2 outlook

RNNs for Chaotic Dynamics

In Chapter 4 we show that both the RNNs and RC cannot capture the zero
LEs in the LS of the Kuramoto-Sivashinsky equation. Further investigation
is needed on the underlying reasons why the RNNs and RC cannot capture
the zero LEs. Another exciting direction could include studying the memory
capacity of the networks. This could offer more insight into which archi-
tecture and training method is more appropriate for tasks with long-term
dependencies. Moreover, coupling the two training approaches may further
improve predictive performance. For example, a network can utilize both
RC and LSTM computers to identify the input to output mapping. While
the weights of the RC are initialized randomly to satisfy the echo state
property, the output weights alongside the LSTM weights can be optimized
by backpropagation. This approach, although more costly, might achieve
higher efficiency, as the LSTM is used as a residual model correcting the
error that a plain RC would have.

Further directions could be initializing RNN weights with RC-based
heuristics based on the echo state property and fine-tuning with BPTT. This
is possible for the plain cell RNN, where the heuristics are directly appli-
cable. However, in more complex architectures like the LSTM or the GRU,
more sophisticated initialization schemes that ensure some form of echo
state property have to be investigated. The computational cost of training
networks of the size of RC with backpropagation is also challenging. An-
other interesting topic is to analyze the influence of the amount of training
data and system size on the predictive efficiency of the methods, under the
lens of the recently discovered “double descent” curve (Belkin et al., 2019),

8.2 outlook 163

supporting that over-parametrized networks (increasing model capacity
beyond the point of interpolation) results in improved generalization.

One topic not covered in this work is the invertibility of the models when
forecasting the full state dynamics. Non-invertible models like the RNNs
may suffer from spurious dynamics that are not part of the training data and
the underlying governing equations (Frouzakis et al., 1997; Gicquel et al.,
1998). Invertible RNNs may constitute a promising alternative to improve
accurate short-term prediction and capture the long-term dynamics.

Another possible research direction is to model the attractor dynamics in
the reduced space of a dynamical system using a mixture of LSTM models,
one model for each region. The LSTMs proposed in this work model
the attractor dynamics globally. However, different attractor regions may
exhibit different dynamic behaviors, which cannot be modeled using only
one network. These regimes can be uncovered by unsupervised clustering,
and a different local model can be trained for each region. Moreover, these
local models can be combined with a closure scheme compensating for
truncation and modeling errors. This local modeling approach may improve
prediction performance significantly.

LED for Experimental Processes and Climate

In this thesis, we demonstrated the application of LED to complex multiscale
systems from fluid flows to molecules. Future research efforts need to be
concentrated on the extension of the LED methodology to experimental
settings and real-world data. We envision how experimental snapshots
may inform the latent space dynamics through autoencoders. However,
the challenge remains on how to reinitialize the experiments from the
decoded microscale description. As a consequence, more research efforts
are needed to resolve this. Real-world applications often entail noisy data.
The robustness of LED to noise needs to be further investigated. Moreover,
LED can be employed to build accurate data-driven climate models by
fitting to publicly available data (Rasp et al., 2020).

The methods developed in this thesis can be employed as digital twins
of physical objects or processes. Both RNNs and the LED can be trained to
mimic the dynamics in real-time of physical systems based on the digital
twin paradigm (El Saddik, 2018; Schluse et al., 2018; F. Tao et al., 2019).

Physical systems are often characterized by physical properties, like
energy conservation, mass conservation, physical symmetries, etc. Enforcing

164 conclusion and outlook

these properties by constraining the architecture of the network can improve
predictive performance and lead to more physical predictions. Physical
properties can also be enforced in a soft way by introducing an auxiliary loss.
This method has shown promising results in the climate sciences (Beucler
et al., 2021). The design and implementation of methods to enforce analytic
constraints representing the system’s physical properties is a promising
research direction.

Scaling LED for 3D High-dimensional Dynamics

The performance of LED for high-dimensional fluid flows can be improved
by introducing geometric priors in the architecture of the AE. Wavelets (Chui
et al., 1992) are employed widely to design computational tools for analysis,
modeling, and understanding of fluid flows (Farge et al., 1996; Hejazialhos-
seini et al., 2010). Wavelets have been embedded in neural networks (Alexan-
dridis et al., 2013; Q. Li et al., 2020), showing promising results in hydrol-
ogy (Partal et al., 2009). Incorporating wavelets in the Autoencoding part of
LED can improve predictive ability and scalability to higher-dimensional
fluid flows.

In this work, LED has been demonstrated on a high-dimensional 2D
flow, i.e., the Navier-Stokes flow past a cylinder. Recent hardware advances
alleviate the GPU memory requirement burden for scaling LED to 3D flows.
We consider this a promising research direction. Training the RNN of the
LED requires a significant amount of computational resources and training
time. The utilization of recently proposed alternatives, e. g. Transformer
networks Bertasius et al., 2021; Vaswani et al., 2017, might alleviate this
burden.

Adaptive and Parametric LED

The LED does not presently contain any mechanism to decide when to
upscale the latent space dynamics. In a real-time scenario, if the dynamics
of the system change due to an external forcing, which may be known or
unknown, the LED cannot detect or adapt to this change. Consequently, the
predictions of LED will eventually diverge from the actual physical system.
We can alleviate this issue by considering the uncertainty of LED in the
latent space predictions and by employing an ensemble of networks (Laksh-
minarayanan et al., 2016) that provide uncertainty estimates of the predic-

8.2 outlook 165

tions and detect samples unseen during training. The training procedure
can be adapted to take into account retraining every time a new dynamic
regime is detected online. Moreover, we do not expect LED to generalize
to dynamical regions drastically different from those represented in the
training data. If the dynamics of a system depend on a few parameters, and
these are known for each simulation, we can inform the latent space of the
LED with these parameters and generalize to unseen dynamical regimes.

Another exciting direction is the extension of LED to fluid flow prediction
of varying geometries and shapes. The LED can be trained on large datasets
to predict the fluid flow around any object. The object geometry can be
provided as an additional input to the network. In this way, the LED will
generalize and predict flows around shapes unseen during training.

LED for Realistic Molecular Systems

In the context of molecular simulations, LED can be coupled with an MD
solver in different parts of the domain for faster exploration of the state-
space. Currently, the scalability of the LED to large proteins is challenging
due to the fact that the probability distribution of the protein configuration
is difficult to model. The protein can be described with its coordinates
(x, y, and z coordinates of the molecules), its internal coordinates (e.g.,
angles, bond lengths, etc.), or as a graph. Modeling the protein with its
coordinates poses significant challenges and was proven problematic in
practice because the protein structure is not embedded in the data, and
training a probabilistic decoder to sample realistic configurations is hard.
This thesis investigated the second approach, representing the protein with
its internal coordinates. This encouraged the MDN decoder to sample
realistic configurations. However, training the MDN decoder is challenging,
as the description is multi-modal. On the one hand, angles are circular
variables that can be modeled with a Von-Mishes distribution. On the
other hand, bond lengths are positive real variables modeled with a log-
normal distribution (or a normal distribution along with an invertible non-
linearity mapping to positive values, as employed in this work). Designing
and training a multi-modal probability density model remains an under-
explored area of research.

A third option is to model the protein as a graph (Winter et al., 2021).
This direction is encouraging, primarily due to the development of Graph
Neural Networks (GNNs) (Scarselli et al., 2008), and Graph Mixture Den-

166 conclusion and outlook

sity Networks (Errica et al., 2021). GNNs have the potential to alleviate
the problems mentioned above (Z. Li et al., 2021). LED can be extended
with autoencoding GNNs to identify the latent space and a probabilistic
model to sample a graph from the latent (coarse-grained) description. This
approach is promising to scale LED to high-dimensional realistic protein
configuration.

Moreover, further acceleration can be accomplished by coupling LED and
MD solver in different domain parts for faster exploration of the state-space.
More research efforts are needed to target the application of LED to larger
proteins and investigate its capabilities in uncovering the metastable states
in the free energy profile.

LED for Surrogate Environment Modeling in Reinforcement Learning

Much of the recent success of ML has been achieved by Reinforcement
Learning (Andrychowicz et al., 2020; Jumper et al., 2021; V. Mnih et al.,
2015; Silver et al., 2016) methods that interact actively with an environment
(e.g., a physical system, a dynamical system, or a game). These successes
required extraordinary advancements in both algorithms, high-performance
computing architectures, and hardware to produce the vast amounts of
data required to train the RL agents. RL methods are employed to tackle
real world problems from health-care (Chakraborty et al., 2014), traffic
management (Mannion et al., 2016), electric power grids (Z. Zhang et al.,
2019), and finance (Deng et al., 2016). In many practical applications (driving
cars, fluid flows, physical processes), the computational burden associated
with simulating the environment in RL is prohibitive. In fluid dynamics,
recent works employ advanced algorithms (Novati and Koumoutsakos,
2019) that manage the replay memory (by remembering and forgetting
experiences) to tackle computationally expensive RL problems (Bae et
al., 2021; Mandralis et al., 2021; Novati, de Laroussilhe, et al., 2021), by
improving data efficiency. An overview can be found in (Brunton, Noack,
et al., 2020). In Novati, de Laroussilhe, et al., 2021, RL is employed to
identify neural closure models for isotropic turbulence, generalizing across
grid sizes and Reynolds numbers. The LED can be employed for surrogate
modeling in model-based RL, mimicking the environment dynamics to
alleviate the computational cost further and improve data efficiency.

A
C O U P L I N G A N L S T M - R N N A N D A M E A N S T O C H A S T I C
M O D E L

a.1 methods

a.1.1 Training and Inference

In this section, the LSTM training procedure is explained in detail. We
assume that time series data stemming from a dynamical system is available
in the form D = {zt:N , żt:N}, where zt ∈ Rdz is the state at timestep t and żt
is the derivative. The available time series data are divided into two separate
sets, the training dataset and the validation dataset, i. e. ztrain

t , żtrain
t , t ∈

{1, · · · , Ntrain}, and zval
t , żval

t , t ∈ {1, · · · , Nval}. Ntrain and Nval are the
number of training and validation samples, respectively. We set the ratio to
Ntrain/N = 0.8. This data is stacked as

itrain
t =




ztrain
t+κ2−1

ztrain
t+κ2−2

...

ztrain
t




︸ ︷︷ ︸
Input stack

, otrain
t = żtrain

t+κ2−1︸ ︷︷ ︸
Output stack

, (A.1)

for t ∈ {1, 2, . . . , Ntrain − κ2 + 1}, in order to form the training (and valida-
tion) input and output of the LSTM. These training samples are used to
optimize the parameters of the LSTM (weights and biases) in order to learn
the mapping it → ot. The loss function of each sample is

Lsample(i
train
t , otrain

t , w) = ||Fw(ztrain
t:t−κ2+1︸ ︷︷ ︸

itrain
t

)− otrain
t ||2, (A.2)

while the total Loss is defined as

L(D, w) =
1
S

S

∑
b=1
L(itrain

b , otrain
b , w), (A.3)

167

168 coupling an rnn with a mean stochastic model

where S = Ntrain − κ2 + 1 is the total number of samples. These samples
can be further stacked together as batches of size B, with the loss of the
batch defined as the mean loss of the samples belonging to the batch. Using
only one sample for the loss gradient estimation may lead to noisy gradient
estimates and slow convergence. Mini-batch optimization tackles this issue.

At the beginning of the training, the weights are randomly initialized to
w0 using Xavier initialization. We also tried other initialization methods like
drawing initial weights from random normal distributions or initializing
them to constant values, but they often led to saturation of the activation
functions, especially for architectures with higher backpropagation horizon
κ2. The training proceeds by optimizing the network weights iteratively for
each batch. In order to perform this optimization step, a gradient descent
optimizer can be used

wi+1 = wi − η∇wL(itrain
t , otrain

t , wi), (A.4)

where η is the step-size parameter, wi are the weights before optimizing the
batch i and wi+1 are the updated weights. Plain gradient descent optimiza-
tion suffers from slow convergence in practice and convergence to local
sub-optimal solutions. This approach is especially not well-suited for high-
dimensional problems in deep learning, where the number of parameters
(weights) to be optimized lie in a high-dimensional manifold with many
local optima. Sparse gradients stemming from the mini-batch-optimization
also lead to slow convergence as previously computed gradients are ig-
nored. Recent advances in stochastic optimization led to the invention of
adaptive schemes that efficiently cope with the problems mentioned above.

We used the Adam stochastic optimization method. Adam exploits previ-
ously computed gradients using moments. The weights are initialized to
w0 and the moment vectors to m0

1 and m0
2. At each step the updates in the

Adam optimizer are

g = ∇wL(itrain
t , otrain

t , wi)

mi+1
1 = β1mi

1 + (1− β1) g

mi+1
2 = β2mi

2 + (1− β2) g2

m̂1 = mi+1
1 /(1− βi

1)

m̂2 = mi+1
2 /(1− βi

2)

wi+1 = wi − η m̂1/(
√

m̂2 + ε),

(A.5)

A.1 methods 169

where β1, β2, ε, and η are hyperparameters, g2 is the point-wise square of
the gradient and βi

1 is the parameter β1 in the ith power, where i is the
iteration number. After updating the weights using the Adam optimizer,
described in Equation A.5, for every batch, a “training epoch” is completed.
Many such epochs are performed until the total training loss reaches a
plateau. After each epoch, the loss is also evaluated in the validation data
set in order to avoid overfitting. The validation loss is used as a proxy of the
generalization error. The training is stopped when the validation error is
not decreasing for 30 consecutive epochs, or the maximum of 1000 epochs
is reached. In our work we used β1 = 0.9, β2 = 0.999, ε = 1e− 8. We found
that our results were robust towards the selection of these hyperparameters.
A higher initial learning rate η = 0.001 was used to speed up convergence.
The models are then refined with η = 0.0001.

a.1.2 Weighting the Loss Function

In the training procedure described above the loss function for each sample
is given by

Lsample(it, ot, w) = ||Fw(zt:t−κ2+1︸ ︷︷ ︸
it

)− ot||2. (A.6)

However, the neural network output Fw is a multi-dimensional vector and
represents a prediction of the derivative of the reduced-order state of a
dynamical system. In a dynamical system, specific reduced-order states are
more important than others as they may explain a more significant portion
of the total energy. This importance can be introduced in the loss function
by assigning different weights in different neural network outputs. The loss
of each sample takes then the following form

Lsample(i
j
t, oj

t, w) =
1
do

do

∑
j=1

wj

(
Fw(zj

t:t−κ2+1︸ ︷︷ ︸
ij
t

)− oj
t

)2
, (A.7)

where do is the output dimension and weights wj are selected according to
the significance of each output component, e. g. energy of each component
in the physical system.

170 coupling an rnn with a mean stochastic model

a.1.3 LSTM Architecture

An RNN unfolded κ2 temporal timesteps in the past is illustrated in Fig-
ure A.1. The following discussion on “stateless” and “stateful” RNNs
generalizes to LSTMs, with the only difference that the hidden state con-
sists of ht, ct instead of solely ht and the functions coupling the hidden
states with the input as well as the output with the hidden states are more
complicated.

In “stateless” RNNs the hidden states at the truncation layer κ2, ht−κ2 are
initialized always with 0. As a consequence, o = Fw(it:t−κ2+1) and only the
short-term history is used to perform a prediction. The only difference when
using LSTM cells is that the function Fw has a more complex structure and
additionally ht−κ2 , ct−κ2 = 0.

In contrast, in “stateful” RNNs the states ht−κ2 6= 0. In this case, these
states can be initialized by “teacher-forcing” the RNN using data from a
long history in the past. For example, assuming it−κ2 :t−2d+1 is known, we
can set ht−2d = 0, and compute ht−κ2 using the given history it−κ2 :t−2d+1
ignoring the outputs. This value can then be used to predict

ot = Fw(it:t−κ2+1, ht−κ2) (A.8)

as in Figure A.1. This approach has two disadvantages.

• In order to forecast starting from various initial conditions, even with
“teacher-forcing”, some initialization of the hidden states is imperative.
This initialization introduces additional error, which is not the case
for the “stateless” RNN.

• In the “stateful” RNN a longer history needs to be known in order to
initialize the hidden states with “teacher-forcing.” Even though more
data needs to be available, we did not observe any prediction accuracy
improvement in the cases considered. This follows from the chaotic
nature of the systems, as information longer than some timesteps in
the past are irrelevant for the prediction.

a.2 barotropic model

In this section, we describe the method used to reduce the dimensionality of
the Barotropic climate model. First, the original problem dimension of 231
is reduced using a generalized version of the classical multi-dimensional

A.2 barotropic model 171

it−d+1 it−d+2 it−1 it

ht−d+1 ht−d+2 ht−1 ht

ot

ot = fw
(
it, f

w
hh

(
it−1,

ht−2︷ ︸︸ ︷
fw
hh(. . . , f

w
hh(it−d+1,ht−d)

))
︸ ︷︷ ︸

ht−1

)
=⇒

ot = Fw
(
it, it−1, . . . , it−d+1︸ ︷︷ ︸
short history it−d+1 : t

,ht−d

)

ot = fw
(
it,ht−1

)

︸ ︷︷ ︸
d timesteps

Whi Whi Whi Whi

Whh Whh Whh

Woh

ht−d

ht−d

it−d+1

it−d+2

it−1

it ot

RNN

Figure A.1: An RNN unfolded κ2 timesteps. In mathematical terms, unfolding is
equivalent with iteratively applying f w

hh to ht−κ2 and finally feeding
the result to the output function f w. The output of the RNN is thus
a function of the κ2 previous inputs it:t−κ2+1 and the initialization of
the hidden states ht−κ2 . This function is denoted with Fw. For the
RNN the hidden state mapping has the simple form f w

hh(it, ht−1) =
acth(Whiit + Whhht−1), while the output mapping is f w(it, ht−1) =
σo(Wohht) = σo

(
Woh f w

hh(it, ht−1)
)
. The same argumentation holds

for LSTM, though the form of f w
hh, f w and Fw are more complicated.

scaling method. Then, we construct Empirical Orthogonal Functions (EOFs)
that form an orthogonal basis of the reduced-order space. The dynamics
are projected to the EOFs.

The classical multi-dimensional scaling procedure tries to identify an em-
bedding with a lower dimensionality such that the pairwise inner products
of the dataset are preserved. Assuming that the dataset consists of points
ζ i, i ∈ {1, . . . , N}, whose reduced-order representation is denoted with yi,
the procedure is equivalent with the solution of the following optimization
problem

minimize
y1,...,yN

∑
i<j

(
〈ζ i, ζ j〉ζ − 〈yi, yj〉y

)2, (A.9)

where 〈·, ·〉ζ , and 〈·, ·〉y denote some well defined inner product of the
original space ζ and the embedding space y respectively. The problem
given in (A.9) minimizes the total squared error between pairwise products.
In case both products are scalar products, the solution of (A.9) is equivalent
with PCA. Assuming only 〈·, ·〉y is the scalar product, problem (A.9) also

172 coupling an rnn with a mean stochastic model

accepts an analytic solution. Let Wij = 〈ζ i, ζ j〉ζ be the coefficients of the
Gram matrix, |k1| ≥ |k2| ≥ · · · ≥ |kN | its eigenvalues sorted in descending
absolute value and U1, U2, . . . , UN the respective eigenvectors. The optimal
dz-dimensional embedding for a point ζn is given by

yn =




k1/2
1 Un

1

k1/2
2 Un

2
...

k1/2
dz

Un
κ2




, (A.10)

where Un
m denotes the nth component of the mth eigenvector. The optimal-

ity of Equation A.10 can be proven by the Eckart-Young-Mirsky theorem,
as problem Equation A.9 is equivalent with finding the best dz rank ap-
proximation in the Frobenius norm. In our problem, the standard kinetic
energy product is used to preserve the nonlinear symmetries of the system
dynamics:

〈ζ i, ζ j〉ζ =

ˆ
S
∇ψi · ∇ψjd S = −

ˆ
S

ζiψjd S = −
ˆ
S

ζ jψid S , (A.11)

where the last identities are derived using partial integration and the fact
that ζ = ∆y.

The solution in Equation A.10 is only optimal w. r. t. the N training
data points used to construct the Gram matrix. In order to calculate the
embedding for a new point, it is convenient to compute the EOFs, which
form an orthogonal basis of the reduced-order space y. The EOFs are given
by

φm =
N

∑
n=1

k−1/2
m Un

mζn, (A.12)

where m runs from 1 to dz. The EOFs are sorted in descending order ac-
cording to their energy level. The first four EOFs are plotted in Figure A.2.
EOF analysis has been used to identify individual realistic climatic modes
such as the Arctic Oscillation (AO) known as teleconnections. The first EOF
is characterized by a center of action over the Arctic surrounded by a zonal
symmetric structure in mid-latitudes. This pattern resembles the Arctic
Oscillation/Northern Hemisphere Annular Mode (AO/NAM) and explains
approximately 13.5% of the total energy. The second, third, and fourth EOFs
are quantitatively very similar to the East Atlantic/West Russia, the Pa-
cific/North America (PNA), and the Tropical/Northern Hemisphere (TNH)

A.2 barotropic model 173

patterns end account for 11.4%, 10.4% and 7.1% of the total energy respec-
tively. Since these EOFs feature realistic climate teleconnections, performing
accurate predictions is of high practical importance.

Figure A.2: The four most energetic empirical orthogonal functions of the
barotropic model

As a consequence of the orthogonality of the EOFs w. r. t. the kinetic
energy product, the reduced representation y∗ of a new state ζ∗ can be
recovered from

y∗ =




〈ζ∗, φ1〉ζ
〈ζ∗, φ2〉ζ

...

〈ζ∗, φdz〉ζ




. (A.13)

Note that only the dz coefficients that correspond to the most energetic
EOFs from the reduced-order state y∗ are considered. In essence, the EOFs

174 coupling an rnn with a mean stochastic model

act as an orthogonal basis of the reduced-order space, and the state obtained
from classical multi-dimensional scaling ζ∗ is projected to this basis.

B
R E C U R R E N T N E U R A L N E T W O R K S

b.1 memory efficient implementation of rc training

In order to alleviate the RAM requirement for the computation of the RC
weights, we resort to a batched approach. Assuming the hidden reservoir
size is given by h ∈ Rdh , by teacher forcing the RC network with ground-
truth data from the system for dN timesteps and stacking the evolution of
the hidden state in a single matrix, we end up with matrix H ∈ RdN×dh .
Moreover, by stacking the target values, which are the input data shifted
by one timestep, we end up in the target matrix y ∈ RdN×do , where do is
the dimension of the observable we are predicting. In order to identify the
output weights Wout ∈ Rdo×dh , we need to solve the linear system of dN · do
equations

HWT
out = y. (B.1)

A classical way to solve this system of equations is based on the Moore-
Penrose inverse (pseudo-inverse) computed using

Wout = yTH︸︷︷︸
y

(
HTH︸ ︷︷ ︸

H

+η̃I
)−1

(B.2)

where η̃ is the Tikhonov regularization parameter and I the unit matrix. In
our case dN is of the order of 105 and dN >> dh. To reduce the memory
requirements of the training method, we compute the matrices H = HTH ∈
Rdh×dh and y = yTH ∈ Rdo×dh in a time-batched schedule.

Specifically, we initialize y = 0 and H = 0. Then every dn timesteps
with dn << dN , we compute the batch matrix Hb = HT

b Hb ∈ Rdh×dh ,
where Hb ∈ Rdn×dh is formed by the stacking the hidden state only for
the last dn timesteps. In the same way, we compute yb = yT

b Hb ∈ Rdo×dh ,
where yb ∈ Rdn×do is formed by the stacking of the target data for the last
dn timesteps. After every batch computation we update our beliefs with
H← H + Hb and y← y + yb.

In addition, we also experimented with two alternative solvers for the lin-
ear system Equation B.1 in the Lorenz 96. We tried a dedicated regularized

175

176 recurrent neural networks

least-squares routine utilizing an iterative procedure (scipy.sparse.linalg.lsqr)
and a method based on stochastic gradient descent. We considered the
solver as an additional hyperparameter of the RC models. After testing
the solvers in the Lorenz 96 model, we found out that the method of
pseudo-inverse provides the most accurate results. For this reason, and to
spare computational resources, we used this method for the Kuramoto-
Sivashinsky equation.

b.2 regularizing training with noise

Here, we investigate the effect of noise to the training data. In Figure B.1,
we plot the Valid Prediction Time (VPT) in the testing data with respect to
the VPT that each model achieves in the training data. We find out that RC
models trained with additional noise of 5− 10 ‰not only achieve better
generalization, but their forecasting efficiency improves in both training and
testing datasets. Moreover, the effect of divergent predictions by iterative
forecasts is alleviated significantly. In contrast, adding noise does not seem
to have a significant impact on the performance of GRU models.

B.2 regularizing training with noise 177

0.0 0.5 1.0 1.5 2.0 2.5
VPT in train dataset

0.0

0.5

1.0

1.5

2.0

2.5

V
PT

 in
 te

st
 d

at
as

et

(a) do = 35, F = 8

0 1 2 3 4
VPT in train dataset

0

1

2

3

4

V
PT

 in
 te

st
 d

at
as

et

RC - 0
RC - 5
RC - 10
GRU - 0
GRU - 2

(b) do = 35, F = 10

0.0 0.5 1.0 1.5 2.0 2.5
VPT in train dataset

0.0

0.5

1.0

1.5

2.0

2.5

V
PT

 in
 te

st
 d

at
as

et

(c) do = 40, F = 8

0 1 2 3 4
VPT in train dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V
PT

 in
 te

st
 d

at
as

et

RC - 0
RC - 5
RC - 10
GRU - 0
GRU - 2

(d) do = 40, F = 10

Figure B.1: VPT in the testing data plotted against VPT in the training data for
RC and GRU models trained with added noise of different levels in
the data. The noise only slightly varies the forecasting efficiency in
GRU networks. In contrast, the effectiveness of RC in forecasting the
full-order system is increased as depicted in plots (b) and (d).

178 recurrent neural networks

b.3 dimensionality reduction with singular value decompo-
sition

Singular Value Decomposition (SVD) can be utilized to perform dimen-
sionality reduction in a dataset by identifying the modes that capture the
highest variance in the data and then performing a projection on these
modes. Assuming that a data matrix is given by stacking the time-evolution
of a state U ∈ D as U = [U1, U2, . . . , UN], where the index N is the number
of data samples. By subtracting the temporal mean U and stacking the data,
we end up with the data matrix U ∈ RT×D. Performing SVD on U leads to

U = MΣV T , M ∈ RN×N , Σ ∈ RN×D, V ∈ RD×D, (B.3)

with Σ diagonal, with descending diagonal elements. The columns of
matrix V are considered the modes of the SVD, while the square D singular
values of Σ correspond to the data variance explained by these modes. This
variance is also referred to as energy. In order to calculate the percentage
of the total energy, the square of the singular value of each mode has to
be divided by the sum of squares of the singular values of all modes. In
order to reduce the dimensionality of the dataset, we first have to decide
on the reduced-order dimension dr < D. Then we identify the eigenvectors
corresponding to the most high-energetic eigenmodes. These are given
by the first columns Vr of V , i.e., V = [Vr, V−r]. We discard the low-
energetic modes V−r. The dimension of the truncated eigenvector matrix
is Vr ∈ RD×dr . In order to reduce the dimensionality of the dataset, each
vector U ∈ D is projected to Ur ∈ dr by

c = Vr
TU, c ∈ Rdr . (B.4)

In the Lorenz 96 model, we construct a reduced-order observable with
do = 35 modes of the system. The cumulative energy distribution, along
with a contour plot of the state and the mode evolution, is illustrated
in Figure B.2.

B.3 dimensionality reduction with singular value decomposition 179

(a) State evolution F = 8 (b) State evolution F = 10

(c) Energy spectrum F = 8 (d) Energy spectrum F = 10

(e) SVD mode evolution F = 8 (f) SVD mode evolution F = 10

Figure B.2: Energy spectrum of Lorenz 96

180 recurrent neural networks

Hyperparameter Explanation Values

Dr reservoir size {6000, 9000, 12000, 18000}
N training data samples 105

Solver Pseudoinverse/LSQR/Gradient descent

d degree of Wh,h {3, 8}
$ radius of Wh,h {0.4, 0.8, 0.9, 0.99}
ω input scaling {0.1, 0.5, 1.0, 1.5, 2.0}
η̃ regularization {10−3, 10−4, 10−5, 10−6}
do observed state dimension {35, 40}
nw warm-up steps (testing) 2000

κn noise level in data {0, 0.5%, 1%}

Table B.1: Hyperparameters of RC for Lorenz 96

Hyperparameter Explanation Values

dh hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N training data samples 105

B batch-size 32

κ1 BPTT forward timesteps {1, 8}
κ2 BPTT truncated backprop. length {8, 16}
κ3 BPTT skip gradient parameter = κ2 + κ1 − 1

η̃ initial learning rate 10−3

p zoneout probability {0.99, 0.995 1.0}
do observed state dimension {35, 40}
nw warm-up steps (testing) 2000

κn noise level in data {0, 0.2%}

Table B.2: Hyperparameters of GRU/LSTM for Lorenz 96

b.4 hyperparameters

For the Lorenz 96 model space with do ∈ {35, 40} (in the PCA mode), we
used the hyperparameters reported on Table B.1 for RC and Table B.2 for
GRU/LSTM models. For the parallel architectures in the state-space of
Lorenz 96 the hyperparameters are reported on Table B.4 and Table B.5
for the parallel RC and GRU/LSTM models respectively. For the parallel
architectures in the state-space of the Kuramoto-Sivashinsky architecture
the hyperparameters are reported on Table B.6 and Table B.7 for the parallel
RC and GRU/LSTM models respectively. We note here that in all RNN
methods, the optimizer used to update the network can also be optimized.
To alleviate the computational burden, we stick to Adam.

B.4 hyperparameters 181

Hyperparameter Explanation Values

dh hidden state size {1, 2, 3} layers of {500, 1000, 1500}
N training data samples 105

B batch-size 32

κ1 BPTT forward timesteps {1, 8}
κ2 BPTT truncated backprop. length {8, 16}
κ3 BPTT skip gradient parameter = κ2 + κ1 − 1

η̃ initial learning rate 10−3

p zoneout probability 1.0

do observed state dimension {35, 40}
nw warm-up steps (testing) 2000

κn noise level in data {0, 0.2%}

Table B.3: Hyperparameters of Unitary Evolution networks for Lorenz 96

Hyperparameter Explanation Values

Dr reservoir size {1000, 3000, 6000, 12000}
Ng number of groups 20

G group size 2

I interaction length 4

N training data samples 105

Solver Pseudoinverse/LSQR/Gradient descent

d degree of Wh,h 10

$ radius of Wh,h 0.6

ω input scaling 0.5

η̃ regularization 10−6

do observed state dimension 40

nw warm-up steps (testing) 2000

Table B.4: Hyperparameters of Parallel RC for Lorenz 96

182 recurrent neural networks

Hyperparameter Explanation Values

dh hidden state size {100, 250, 500}
Ng number of groups 20

G group size 2

I interaction length 4

N training data samples 105

B batch-size 32

κ1 BPTT forward timesteps 4

κ2 BPTT truncated backprop. length 4

κ3 BPTT skip gradient parameter 4

η̃ initial learning rate 10−3

p zoneout probability {0.998, 1.0}
do observed state dimension 40

nw warm-up steps (testing) 2000

Table B.5: Hyperparameters of Parallel GRU/LSTM for Lorenz 96

Hyperparameter Explanation Values

Dr reservoir size {500, 1000, 3000, 6000, 12000}
Ng number of groups 64

G group size 8

I interaction length 8

N training data samples 105

Solver Pseudoinverse

d degree of Wh,h 10

$ radius of Wh,h 0.6

ω input scaling 1.0

η̃ regularization 10−5

do observed state dimension 512

nw warm-up steps (testing) 2000

Table B.6: Hyperparameters of Parallel RC for Kuramoto-Sivashinsky

B.4 hyperparameters 183

Hyperparameter Explanation Values

dh hidden state size {80, 100, 120}
Ng number of groups 64

G group size 8

I interaction length 8

N training data samples 105

B batch-size 32

κ1 BPTT forward timesteps 4

κ2 BPTT truncated backprop. length 4

κ3 BPTT skip gradient parameter 4

η̃ initial learning rate 10−3

p zoneout probability {0.998, 1.0}
do observed state dimension 512

nw warm-up steps (testing) 2000

Table B.7: Hyperparameters of Parallel GRU/LSTM for Kuramoto-Sivashinsky

Hyperparameter Explanation Values

dh hidden state size {100, 200, 400}
Ng number of groups 64

G group size 8

I interaction length 8

N training data samples 105

B batch-size 32

κ1 BPTT forward timesteps 4

κ2 BPTT truncated backprop. length 4

κ3 BPTT skip gradient parameter 4

η̃ initial learning rate 10−2

p zoneout probability 1.0

do observed state dimension 512

nw warm-up steps (testing) 2000

Table B.8: Hyperparameters of Parallel Unitary Evolution networks for
Kuramoto-Sivashinsky

184 recurrent neural networks

b.5 divergence of unitary and rc rnns in lorenz 96

In this section, we try to quantify the divergence effect due to the accumu-
lation of the forecasting error in the iterative prediction. In Figure B.3 we
present violin plots with fitted kernel density estimates for the number of
divergent predictions of each hyperparameter set, computed based on all
tested hyperparameter sets for forcing regimes F ∈ {8, 10} and observable
dimensions do ∈ {35, 40}. The annotated lines denote the minimum, mean
and maximum number of divergent predictions over the 100 initial condi-
tions of all hyperparameter sets. In the fully observable systems do = 40, in
both forcing regimes F ∈ {8, 10}, there are many models (hyperparameter
sets) with zero divergent predictions for RC, GRU, and LSTM, as illustrated
by the wide lower part of the violin plot. In contrast, most hyperparameter
sets in Unitary networks lead to models whose iterative predictions diverge
from the attractor, as illustrated by the wide upper part in the violin plot.
This divergence effect seems more prominent in RC and Unitary networks
in the reduced-order scenario, as indicated by the skinny lower part of their
violin plots for both forcing regimes. In contrast, many hyperparameter sets
of GRU and LSTM models lead to stable iterative prediction. This indicates
that hyperparameter tuning in RC and Unitary networks is cumbersome
when the system state is not fully observed compared to LSTM and GRU
networks.

One example of this divergence effect in the reduced-order scenario in
an initial condition from the test dataset is illustrated in Figure B.4. After
approximately two Lyapunov times, the RC and the Unitary networks
diverge in the reduced-order state predictions. A second example for the
full state information scenario is given in Figure B.5. Unitary networks suffer
from the propagation of forecasting error, and eventually, their forecasts
diverge from the attractor. Forecasts in the case of an observable dimension
do = 40 diverge slower as the dynamics are deterministic. Forecasting the
observable with do = 35 is challenging due to both (1) sensitivity to initial
condition and (2) incomplete state information that requires the capturing
of temporal dependencies. RC models achieve superior forecasting accuracy
in the full-state setting compared to all other models. In the challenging
reduced-order scenario, LSTM and GRU networks demonstrate a stable
behavior in iterative prediction and reproduce the long-term statistics of
the attractor. In contrast, in the reduced-order scenario RC suffer from
frequent divergence. The divergence effect is illustrated in this chosen
initial condition.

B.5 divergence of unitary and rc rnns in lorenz 96 185

35 40
Reduced order dimension

0

20

40

60

80

100

D
iv

er
ge

nt
 p

re
di

ct
io

ns

(a) F = 8

35 40
Reduced order dimension

0

20

40

60

80

100

D
iv

er
ge

nt
 p

re
di

ct
io

ns

(b) F = 10

Figure B.3: Violin plots with kernel density estimates of the number of divergent
predictions over the 100 initial conditions from the test data, over all
hyperparameter sets for RC, GRU, LSTM, and Unitary networks, for
reduced-order state do = 35 and full-order state do = 40 in two forc-
ing regimes (a) F = 8 and (b) F = 10 in the Lorenz 96 model. Most
hyperparameter sets of Unitary networks lead to models that diverge
in iterative forecasting in both reduced-order and full-order scenarios
for both F ∈ {8, 10}. Although the divergence effect is a non-issue
in RC in the full state scenario do = 40, indicated by the wide part
in the lower end of the density plot, the effect is more prominent in
the reduced-order scenario compared to GRU and LSTM. Identifying
hyperparameters for LSTM and GRU networks that show stable iter-
ative forecasting behavior in the reduced-order space is significantly
easier than RC and Unitary networks, as indicated by the wide/thin
lines in the lower part of the density plots of the first/latter.
RC ; GRU ; LSTM ; Unit ;

186 recurrent neural networks

Figure B.4: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 8 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the groud-truth (target) evolu-
tion and the associated NRSE contours for the reduced-order observ-
able do = 35. The component average normalized RMSE (NRMSE)
evolution is plotted to facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

Figure B.5: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 8 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the ground-truth (target)
evolution and the associated NRSE contours for the full state do = 40.
The evolution of the component average normalized RMSE (NRMSE)
is plotted to facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

B.6 results on lorenz 96 for F = 10 187

b.6 results on lorenz 96 for F = 10

In Figure B.6, we provide additional results for the forcing regime F =
10 that are in agreement with the main conclusions drawn in the main
manuscript for the forcing regime F = 8.

An example of a single forecast of the models starting from an initial
condition in the test dataset is given in Figure B.7 for the reduced-order
scenario, i. e. do = 35, and Figure B.8 for the full state scenario, i. e. do = 40.
Forecasting the observable with do = 35 is more challenging compared
to the full state scenario (do = 40) due to both (1) sensitivity to initial
condition and (2) incomplete state information that requires the capturing
of temporal dependencies. For this reason, the iterative prediction error
increases slower in do = 40. Even in the challenging scenario of do =
35, LSTM and GRU networks demonstrate a stable behavior in iterative
prediction and reproduce the long-term statistics of the attractor. In the
reduced-order setting do = 35, accurate short-term predictions can be
achieved with very large RC networks (dh = 9000) at the cost of high
memory requirements. However, even in this case, RC models may diverge
from the attractor and do not reproduce the attractor climate.

188 recurrent neural networks

0.2 0.4 0.6 0.8
RAM Memory [MB] 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
PT

(a) VPT w. r. t. RAM mem-
ory for do = 35.

0 1 2 3 4 5
Training time [s] 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
PT

(b) VPT w. r. t. the training
time for do = 35.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
VPT in train dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

V
PT

 in
 te

st
 d

at
as

et

(c) VPT in test data w. r. t.
VPT in the training data
for do = 35.

0.2 0.4 0.6 0.8
RAM Memory [MB] 1e4

0.0

0.5

1.0

1.5

2.0

V
PT

(d) VPT w. r. t. RAM mem-
ory for do = 40.

0.0 0.2 0.4 0.6 0.8
Training time [s] 1e5

0.0

0.5

1.0

1.5

2.0

V
PT

(e) VPT w. r. t. the training
time for do = 40.

0 1 2 3 4
VPT in train dataset

0

1

2

3

4

V
PT

 in
 te

st
 d

at
as

et

(f) VPT in test data w. r. t.
VPT in the training data
for do = 40.

Figure B.6: Forecasting results on the dynamics of an observable consisting of the
SVD modes of the Lorenz 96 model with F = 10 and state dimension
40. The observable consists of the do ∈ {35, 40} most energetic modes.
(a), (d) Valid prediction time (VPT) plotted w. r. t. the required RAM
memory for dimension do ∈ {35, 40}. (b), (e) VPT plotted w. r. t.
training time for dimension do ∈ {35, 40}. (c), (f) VPT measured from
100 initial conditions sampled from the test data plotted w. r. t. VPT
from 100 initial conditions sampled from the training data for each
model for do ∈ {35, 40}. In the reduced-order scenario, RCs tend to
overfit easier compared to GRUs/LSTMs that utilize validation-based
early stopping.
RC ; GRU ; LSTM ; Unit ; Ideal ;

B.6 results on lorenz 96 for F = 10 189

Figure B.7: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 10 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the true (target) evolution
and the associated NRSE contours for the reduced-order observable
do = 35. The evolution of the component average normalized RMSE
(NRMSE) is plotted to facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

Figure B.8: Contour plots of a spatio-temporal forecast on the SVD modes of the
Lorenz 96 model with F = 10 in the testing dataset with GRU, LSTM,
RC, and a Unitary network along with the true (target) evolution and
the associated NRSE contours for the full state do = 40. The evolution
of the component average normalized RMSE (NRMSE) is plotted to
facilitate comparison.
GRU ; LSTM ; RC-6000 ; RC-9000 ; Unit ;

190 recurrent neural networks

b.7 temporal dependencies and backpropagation

In order to train the GRU and LSTM models with BPTT, we need to tune the
parameters κ1 and κ2. The first one denotes the truncated backpropagation
length (also referred to as sequence length), and the second the number of
future timesteps used to compute the loss and backpropagate the gradient
during training at each batch. In the hyperparameter study, we varied
κ1 ∈ {8, 16} and κ2 ∈ {1, 8}. For each of these hyperparameter sets, we
varied all other hyperparameters according to the grid search reported
in Appendix B.4.

In Figure B.9 we present a violin plot that illustrates the forecasting
efficiency of LSTM and GRU models trained with the listed κ1 and κ2
(legend of the plot) while varying all other hyperparameters. The forecasting
efficiency is quantified in terms of the Valid Prediction Time (VPT) in the
test dataset (averaged over 100 initial conditions) on the Lorenz 96 model
for F ∈ {8, 10}. The three bars in each violin plot denote the minimum,
average and maximum performance.

In the reduced-order scenario case, we observe that models with a large
sequence length κ1 and a large prediction length κ2 are pivotal to achieving
a high forecasting efficiency. This implies temporal correlations in the data
that other models with smaller horizons cannot easily capture. In contrast,
in the full-order scenario, models with smaller κ1 perform reasonably well,
demonstrating that the need to capture temporal correlations in the data
to forecast the evolution is less prominent since the full information of the
state of the system is available.

B.7 temporal dependencies and backpropagation 191

35 40
Reduced order dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
V

PT

GRU-8-1
GRU-16-1
GRU-8-8
GRU-16-8
LSTM-8-1
LSTM-16-1
LSTM-8-8
LSTM-16-8

(a) F = 8

35 40
Reduced order dimension

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

V
PT

GRU-8-1
GRU-16-1
GRU-8-8
GRU-16-8
LSTM-8-1
LSTM-16-1
LSTM-8-8
LSTM-16-8

(b) F = 10

Figure B.9: Violin plots of the VPT in the testing data for stateful LSTM and GRU
models trained with different truncated Backpropagation through
time parameters κ1 and κ2 in the (reduced) SVD mode observable of
the Lorenz 96 model. The legend of each plot reports the models and
their κ1 − κ2 parameters used to train them. The three markers report
the minimum, mean and maximum VPT. We observe that, especially
in the reduced-order observable scenario (d0 = 35), having a large
truncated backpropagation parameter κ1 (also referred to as sequence
length) is vital to capture the temporal dependencies in the data and
achieve high forecasting efficiency. In contrast, a model with a small
backpropagation horizon suffices in the full-state scenario (d0 = 40).

C
S C H E D U L E D AU T O R E G R E S S I V E B A C K P R O PA G AT I O N
T H R O U G H T I M E F O R L O N G - T E R M F O R E C A S T I N G

c.1 scheduled autoregressive backpropagation through time

c.1.1 Equation 5.4

zt+1 = Fho ◦ ht+1
(5.2)
= Fho ◦ Hh ◦ ht +Fho ◦ Ho ◦ zt

(5.2)
= Fho ◦ Hh ◦

(
Hh ◦ ht−1 +Ho ◦ zt−1

)
+Fho ◦ Ho ◦ zt

= Fho ◦ Hh ◦ Hh ◦ ht−1 +Fho ◦ Hh ◦ Ho ◦ zt−1 +Fho ◦ Ho ◦ zt

(5.2)
= Fho ◦ Hh ◦ Hh ◦

(
Hh ◦ ht−2 +Ho ◦ zt−2

)
+Fho ◦ Hh ◦ Ho ◦ zt−1 +Fho ◦ Ho ◦ zt

= Fho ◦ (Hh)
3 ◦ ht−2 +Fho ◦ (Hh)

2 ◦ Ho ◦ zt−2 +Fho ◦ Hh ◦ Ho ◦ zt−1 +Fho ◦ Ho ◦ zt

...

(5.2)
= Fho ◦ (Hh)

κ
2 ◦ ht−κ2+1 +Fho ◦

κ2−1

∑
k=0

(Hh)
k ◦ Ho ◦ zt−k.

(C.1)

c.1.2 Equation 5.6

zt+1 = Fho ◦ ht+1
(5.2)
= Fho ◦

(
Hh ◦ ht +Ho ◦ zt

)

(5.3)
= Fho ◦

(
Hh ◦ ht +Ho ◦ Fho ◦ ht

)

= Fho ◦
(
Hh +Ho ◦ Fho

)
◦ ht

...
(5.2),(5.3)

= Fho ◦
(
Hh +Ho ◦ Fho

)κ2−1 ◦ ht−κ2+2

= Fho ◦
(
Hh +Ho ◦ Fho

)κ2−1 ◦
(
Hh ◦ ht−κ2+1 +Ho ◦ zt−κ2+1

)

(C.2)

193

194 scheduled autoregressive bptt

BPTT-TF BPTT-SS BPTT-SA
0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

M
SE

BPTT-TF BPTT-SS BPTT-SA
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Po
w

er
 S

pe
ct

ru
m

 E
rr

or

Figure C.1: Results on the Darwin sea level pressure dataset.

c.2 darwin sea level temperatures

We evaluate the long-term predictability of the methods in the open-
source dataset of the monthly values of the Darwin Sea Level Pressure
series Monthly values of the Darwin Sea Level Pressure series, 1882-1998 n.d.,
frequently used for benchmarking of time series prediction methods. The
dataset consists of 1400 samples. The first 600 samples are used for training
and the next 400 for validation. The long-term forecasting accuracy of the
methods is evaluated on 32 initial conditions randomly sampled from the
test data. The RNNs forecast up to a prediction horizon of 100 timesteps
after an initial warm-up period of 50 timesteps. The results are illustrated
in Figure C.1. We observe that both variants BPTT-SA and BPTT-SS do not
improve the RMSE or the power spectrum error.

The hyperparameters for the networks employed in the Darwin dataset
are given in Table C.1.

c.3 mackey-glass equation

The hyperparameters for the networks employed in the Mackey-Glass
equation are given in Table C.2.

C.3 mackey-glass equation 195

Hyperparameter Values

Optimizer Adam

Batch size 32

Initial learning rate 0.0001

Max Epochs 2000

Random Seed {1, . . . , 10}
BPTT sequence length κ2 100

Prediction horizon 100

Number of testing initial conditions 32

Number of LSTM layers 1

Size of LSTM layers 100

Activation of LSTM Cell tanh

Scaling [0, 1]

Table C.1: Hyperparameter tuning in Darwin dataset

Hyperparameter Values

Optimizer Adam

SNR {10, 60}
Batch size 32

Initial learning rate 0.0005

Max Epochs 2000

Random Seed {1, . . . , 10}
BPTT sequence length κ2 40

Prediction horizon 896

Number of testing initial conditions 100

Number of LSTM layers 1

Size of LSTM layers 100

Activation of LSTM Cell tanh

Scaling [0, 1]

Table C.2: Hyperparameter tuning in Mackey-Glass equation

196 scheduled autoregressive bptt

c.4 viscous flow past a cylinder in a channel

c.4.1 Data Generation

The flow is simulated with a Finite Element (FEM) solver Alnæs et al., 2015

with a timestep of 0.001. The velocity u ∈ R2 and pressure p ∈ R values
were extracted in a uniform grid of 160× 32, and data are subsampled to
∆t = 0.01. For plotting purposes, we plot the Frobenius norm of the velocity

u =
√

u2
x + u2

y. For more information on the geometry and simulation,
details refer to Petter Langtangen et al., 2017. The total simulation time
is T = 24. The first 200 timesteps are used for training, the next 200 for
validation, and the next 2000 for testing. The long-term iterative prediction
performance of the methods is evaluated on prediction of 1000 timesteps
starting from 10 initial conditions randomly sampled from the test data.

c.4.2 Hyperparameters

The hyperparameters for the networks employed in the viscous flow past
a cylinder in a channel dataset are given in Table C.5 for ConvRNNs and
in Table C.4 for CNN-RNNs. The autoencoder of CNN-RNNs is composed
of consecutive Convolutional layers, Average pooling, CELU activation,
and Batch-Norm layers. The exact architecture is given in Table C.3. The
autoencoder is reducing the dimensionality on a z ∈ R5 latent space. An
LSTM with 24 units is predicting on this latent space.

C.4 viscous flow past a cylinder in a channel 197

Layer Encoder Decoder

1 ZeroPad2d(padding=(5, 5, 5, 5), value=0.0) Upsample(scale_factor=2.0, mode=bilinear)

2 Conv2d(3, 5, kernel_size=(11, 11), stride=(1, 1)) ConvTranspose2d(1, 2, kernel_size=(3, 3), stride=(1, 1), padding=[1, 1])

3 AvgPool2d(kernel_size=2, stride=2, padding=0) CELU(alpha=1.0)

4 CELU(alpha=1.0) BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=False)

5 BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=False) Upsample(scale_factor=2.0, mode=bilinear)

6 ZeroPad2d(padding=(4, 4, 4, 4), value=0.0) ConvTranspose2d(2, 20, kernel_size=(3, 3), stride=(1, 1), padding=[1, 1])

7 Conv2d(5, 10, kernel_size=(9, 9), stride=(1, 1)) CELU(alpha=1.0)

8 AvgPool2d(kernel_size=2, stride=2, padding=0) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=False)

9 CELU(alpha=1.0) Upsample(scale_factor=2.0, mode=bilinear)

10 BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=False) ConvTranspose2d(20, 10, kernel_size=(7, 7), stride=(1, 1), padding=[3, 3])

11 ZeroPad2d(padding=(3, 3, 3, 3), value=0.0) CELU(alpha=1.0)

12 Conv2d(10, 20, kernel_size=(7, 7), stride=(1, 1)) BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=False)

13 AvgPool2d(kernel_size=2, stride=2, padding=0) Upsample(scale_factor=2.0, mode=bilinear)

14 Conv2d(5, 10, kernel_size=(9, 9), stride=(1, 1)) ConvTranspose2d(10, 5, kernel_size=(9, 9), stride=(1, 1), padding=[4, 4])

15 BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=False) CELU(alpha=1.0)

16 ZeroPad2d(padding=(1, 1, 1, 1), value=0.0) BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=False)

17 Conv2d(20, 2, kernel_size=(3, 3), stride=(1, 1)) Upsample(scale_factor=2.0, mode=bilinear)

18 AvgPool2d(kernel_size=2, stride=2, padding=0) ConvTranspose2d(5, 3, kernel_size=(11, 11), stride=(1, 1), padding=[5, 5])

19 CELU(alpha=1.0) 0.5 + 0.5 Tanh()

20 BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=False)

21 ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)

22 Conv2d(20, 2, kernel_size=(3, 3), stride=(1, 1))

23 AvgPool2d(kernel_size=2, stride=2, padding=0)

24 CELU(alpha=1.0)

Latent z ∈ R5

Scaling [0, 1]

Table C.3: Architecture of CNN of CNN-RNNs in viscous flow past a cylinder in
a channel dataset

Hyperparameter Values

Optimizer Adam

Batch size 32

Initial learning rate 0.001

Max Epochs 1000

Random Seed {1, 2, 3, 4}
BPTT sequence length κ2 20

Prediction horizon 1000

Number of testing initial conditions 10

RNN Cell LSTM

Number of RNN layers 1

Size of RNN layers 24

Scaling [0, 1]

Table C.4: Hyperparameters of CNN-RNNs in Viscous Flow Past a Cylinder in a
Channel

198 scheduled autoregressive bptt

Hyperparameter Values

Optimizer Adam

Batch size 16

Initial learning rate 0.0001

Max Epochs 5000

Random Seed {1, 2, 3}
BPTT sequence length κ2 50

Prediction horizon 1000

Number of testing initial conditions 10

RNN Cell LSTM

Number of RNN layers 1

Size of RNN layers 8

Kernel size 5

Scaling [0, 1]

Table C.5: Hyperparameters of ConvRNNs in in Viscous Flow Past a Cylinder in
a Channel

D
L E A R N I N G E F F E C T I V E D Y N A M I C S

d.1 fitzhugh-nagumo model

Input and output are scaled to [0, 1] and an output activation function of
the form 1 + 0.5 tanh(·) is used to ensure that the data at the output lie at
this range. The hyper-parameter tuning of the autoencoder of LED and
training times are reported in Table D.1. PCA and Diffusion maps have very
short fitting (training) times of approximately one minute. The layers of the
CNN autoencoder employed in the FHN and its training times are given
in Table D.3.

The hyperparameters for the LSTM and its training times are given
in Table D.2. For the MLP, a three-layered network with CELU activations is
employed. Training time for the MLP is 100 minutes. The hyperparameters
and training times for the RC are given in Table D.4. The hyperparameters
and training times for SINDy are given in Table D.5.

In all cases, the parameters of the best performing model on the validation
data is denoted with red color.

d.2 the kuramoto-sivashinsky equation

The hyper-parameter tunings and training times for the AE and CNN are
given in Table D.6 and Table D.7 respectively . The architecture of the CNN
autoencoder employed in KS is given in Table D.8 along with the training
times and depicted in Figure 6.9. PCA fitting time is approximately one
minute. The hyperparameters and training times of the LSTM-RNN of LED
are given in Table D.9. The hyperparameters and training times of the RC
are given in Table D.10. The hyperparameters and training times of SINDy
are given in Table D.11.

199

200 learning effective dynamics

Hyper-parameter tuning Values

Number of AE layers {3}
Size of AE layers {100}

Activation of AE layers celu(·)
Latent dimension {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 28, 32, 36, 40, 64}

Input/Output data scaling [0, 1]

Output activation 1 + 0.5 tanh(·)
Weight decay rate {0.0, 0.0001}

Batch size 32

Initial learning rate 0.001

Training times [minutes]

Min Mean Max

130 180 235

Table D.1: Autoencoder hyperparameters and training times for FHN

d.3 viscous flow past a cylinder

LED employs a Convolutional neural network (CNN) to identify a low-
dimensional latent space z ∈ R4 in the Re = 100 scenario, and z ∈ R10 in
the Re = 1000 scenario. The CNN architecture is depicted in Figure 6.15,
and the layers are given in Table D.12. We experimented with various
activation functions, addition of batch-normalization layers, addition of
transpose convolutional layers in the decoding part, different kernel sizes,
and optimizers. The data are scaled to [0, 1]. The output activation function
of the CNN autoencoder is set to 0.5 + 0.5 tanh(·), whose image range
matches the data range.

The hyper-parameter tuning and training times for the LSTM-RNN of
LED are given in Table D.13. The hyperparameters and training times for
the RC are given in Table D.14. The hyperparameters and training times for
SINDy are given in Table D.15.

The hyperparameters and training times for the RC are given in Ta-
ble D.14. The hyperparameters and training times for SINDy are given
in Table D.15.

D.3 viscous flow past a cylinder 201

Hyper-parameter Values

end2end training True / False

Number of AE layers {3}
Size of AE layers {100}

Activation of AE layers celu(·)
Latent dimension 2

Input/Output data scaling [0, 1]

Output activation 1 + 0.5 tanh(·)
Weight decay rate 0.0

Batch size 32

Initial learning rate 0.001

BPTT Sequence length {20, 40, 60}
Output forecasting loss True/False

RNN cell type lstm

Number of RNN layers 1

Size of RNN layers {16, 32, 64}
Activation of RNN Cell tanh(·)

Output activation of RNN Cell 1 + 0.5 tanh(·)

Training times [minutes] Min Mean Max

end2end training 2.2 2.5 2.8

only the RNN (sequential) 0.9 1.2 1.6

Table D.2: LED-RNN hyperparameters and training times for FHN

202 learning effective dynamics

Layer ENCODER

(0) ConstantPad1d(padding=(13, 14), value=0.0)

(1) ConstantPad1d(padding=(2, 2), value=0.0)

(2) Conv1d(2, 8, kernel_size=(5,), stride=(1,))

(3) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(4) CELU(alpha=1.0)

(5) ConstantPad1d(padding=(2, 2), value=0.0)

(6) Conv1d(8, 16, kernel_size=(5,), stride=(1,))

(7) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(8) CELU(alpha=1.0)

(9) ConstantPad1d(padding=(2, 2), value=0.0)

(10) Conv1d(16, 32, kernel_size=(5,), stride=(1,))

(11) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(12) CELU(alpha=1.0)

(13) ConstantPad1d(padding=(2, 2), value=0.0)

(14) Conv1d(32, 4, kernel_size=(5,), stride=(1,))

(15) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(16) Flatten(start_dim=-2, end_dim=-1)

(17) Linear(in_features=32, out_features=dz, bias=True)

(18) CELU(alpha=1.0)

z ∈ Rdz

Layer DECODER

(1) Linear(in_features=dz, out_features=32, bias=True)

(2) CELU(alpha=1.0)

(3) Upsample(scale_factor=2.0, mode=linear)

(4) ConvTranspose1d(4, 32, kernel_size=(5,), stride=(1,), padding=(2,))

(5) CELU(alpha=1.0)

(6) Upsample(scale_factor=2.0, mode=linear)

(7) ConvTranspose1d(32, 16, kernel_size=(5,), stride=(1,), padding=(2,))

(8) CELU(alpha=1.0)

(9) Upsample(scale_factor=2.0, mode=linear)

(10) ConvTranspose1d(16, 8, kernel_size=(5,), stride=(1,), padding=(2,))

(11) CELU(alpha=1.0)

(12) Upsample(scale_factor=2.0, mode=linear)

(13) ConvTranspose1d(8, 2, kernel_size=(5,), stride=(1,), padding=(2,))

(14) 1 + 0.5 Tanh()

(15) Unpad()

Latent dimension dz {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 28, 32, 36, 40, 64}

Training times [minutes]

Min Mean Max

215 370 530

Table D.3: CNN Autoencoder and training times for FHN

D.3 viscous flow past a cylinder 203

Hyper-parameter tuning Values

Solver Pseudoinverse

Size 1000

Degree 10

Radius 0.99

Input scaling σ {0.5, 1, 2}
Dynamics length 100

Regularization η̃ {0.0, 0.001, 0.0001, 0.00001}
Noise level per mill {10, 20, 30, 40, 100}

Training times [minutes]

Min Mean Max

0.15 0.18 0.19

Table D.4: Reservoir Computer hyperparameters and training times (in CNN-RC)
for FHN

Hyper-parameter tuning Values

Degree {1, 2, 3}
Threshold {0.001, 0.0001, 0.00001}

Library Polynomials

Training times [minutes]

Min Mean Max

0.14 0.23 0.32

Table D.5: SINDy hyperparameters and training times (in CNN-SINDy) for FHN

204 learning effective dynamics

Hyper-parameter tuning Values

Number of AE layers {3}
Size of AE layers {100}

Activation of AE layers celu(·)
Latent dimension {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 28, 32, 36, 40, 64}

Input/Output data scaling [0, 1]

Output activation 1 + 0.5 tanh(·)
Weight decay rate {0.0, 0.0001}

Batch size 32

Initial learning rate 0.001

Training times [minutes]

Min Mean Max

160 192 311

Table D.6: Autoencoder hyperparameters for KS

Hyper-parameter Values

Convolutional True

Kernels Encoder: 5− 5− 5− 5, Decoder: 5− 5− 5− 5

Channels 1− 16− 32− 64− 8− dz − 8− 64− 32− 16− 1

Batch normalization True / False

Transpose convolution True / False

Pooling Average

Activation celu(·)
Latent dimension {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 24, 28, 32, 36, 40, 64}

Input/Output data scaling [0, 1]

Output activation 1 + 0.5 tanh(·)
Weight decay rate 0.0

Batch size 32

Initial learning rate 0.001

Training times [minutes]

Min Mean Max

236 311 476

Table D.7: CNN hyperparameters for KS

D.3 viscous flow past a cylinder 205

Layer ENCODER

(1) ConstantPad1d(padding=(2, 2), value=0.0)

(2) Conv1d(1, 16, kernel_size=(5,), stride=(1,))

(3) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(4) CELU(alpha=1.0)

(5) ConstantPad1d(padding=(2, 2), value=0.0)

(6) Conv1d(16, 32, kernel_size=(5,), stride=(1,))

(7) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(8) CELU(alpha=1.0)

(9) ConstantPad1d(padding=(2, 2), value=0.0)

(10) Conv1d(32, 64, kernel_size=(5,), stride=(1,))

(11) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(12) CELU(alpha=1.0)

(13) ConstantPad1d(padding=(2, 2), value=0.0)

(14) Conv1d(64, 8, kernel_size=(5,), stride=(1,))

(15) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))

(16) CELU(alpha=1.0)

(17) Flatten(start_dim =-2, end_dim = -1)

(18) Linear(in_features =32, out_features =8, bias=True)

(19) CELU(alpha=1.0)

z ∈ R8

Layer DECODER

(1) Linear(in_features=8, out_features=32, bias=True)

(2) CELU(alpha=1.0)

(3) Upsample(scale_factor=2.0, mode=linear)

(4) Conv1d(8, 64, kernel_size=(5,), stride=(1,), padding=(2,))

(5) CELU(alpha=1.0)

(6) Upsample(scale_factor=2.0, mode=linear)

(7) Conv1d(64, 32, kernel_size=(5,), stride=(1,), padding=(2,))

(8) CELU(alpha=1.0)

(9) Upsample(scale_factor=2.0, mode=linear)

(10) Conv1d(32, 16, kernel_size=(5,), stride=(1,), padding=(2,))

(11) CELU(alpha=1.0)

(12) Upsample(scale_factor=2.0, mode=linear)

(13) Conv1d(16, 1, kernel_size=(5,), stride=(1,), padding=(2,))

(14) 1 + 0.5 Tanh()

Table D.8: CNN Autoencoder for KS

206 learning effective dynamics

Hyper-parameter Values

end2end training False / True

Convolutional AE (CNN) True

Kernels Encoder: 5− 5− 5− 5, Decoder: 5− 5− 5− 5

Channels 1− 16− 32− 64− 8− dz − 8− 64− 32− 16− 1

Batch normalization False

Transpose convolution False

Pooling Average

Activation celu(·)
Latent dimension 8

Input/Output data scaling [0, 1]

Output activation 1 + 0.5 tanh(·)
Weight decay rate 0.0

Batch size 32

Initial learning rate 0.001

BPTT Sequence length {25, 50, 100}
Output forecasting loss True/False

RNN cell type lstm

Number of RNN layers 1

Size of RNN layers {64, 128, 256, 512}
Activation of RNN Cell tanh(·)

Output activation of RNN Cell 1 + 0.5 tanh(·)

Training times [minutes] Min Mean Max

end2end training 476 978 1140

only the RNN (sequential) 960 1100 1140

Table D.9: LED (LSTM-RNN) hyperparameters and training times for KS

D.3 viscous flow past a cylinder 207

Hyper-parameter tuning Values

Solver Pseudoinverse

Size 1000

Degree 10

Radius 0.99

Input scaling σ {0.5, 1, 2}
Dynamics length 100

Regularization η̃ {0.0, 0.001, 0.0001, 0.00001}
Noise level per mill {10, 20, 30, 40, 100}

Training times [minutes]

Min Mean Max

0.25 0.35 0.38

Table D.10: Reservoir Computer hyperparameters and training times (in CNN-
RC) for KS

Hyper-parameter tuning Values

Library Polynomials

Degree {1, 2, 3}
Threshold {0.001, 0.0001, 0.00001}

Training times [minutes]

Min Mean Max

0.13 0.62 1.59

Table D.11: SINDy hyperparameters and training times (in CNN-SINDy) for KS

208 learning effective dynamics

Layer ENCODER

(0) interpolationLayer()

(1) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(2) Conv2d(4, 20, kernel_size=(13, 13), stride=(1, 1))

(3) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(4) AvgPool2d(kernel_size=2, stride=2, padding=0)

(5) CELU(alpha=1.0)

(6) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(7) Conv2d(20, 20, kernel_size=(13, 13), stride=(1, 1))

(8) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(9) AvgPool2d(kernel_size=2, stride=2, padding=0)

(10) CELU(alpha=1.0)

(11) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(12) Conv2d(20, 20, kernel_size=(13, 13), stride=(1, 1))

(13) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(14) AvgPool2d(kernel_size=2, stride=2, padding=0)

(15) CELU(alpha=1.0)

(16) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(17) Conv2d(20, 20, kernel_size=(13, 13), stride=(1, 1))

(18) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(19) AvgPool2d(kernel_size=2, stride=2, padding=0)

(20) CELU(alpha=1.0)

(21) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(22) Conv2d(20, 20, kernel_size=(13, 13), stride=(1, 1))

(23) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(24) AvgPool2d(kernel_size=2, stride=2, padding=0)

(25) CELU(alpha=1.0)

(26) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(27) Conv2d(20, 2, kernel_size=(13, 13), stride=(1, 1))

(28) AvgPool2d(kernel_size=2, stride=2, padding=0)

(29) CELU(alpha=1.0)

(30) Flatten(start_dim=-3, end_dim=-1)

(31) Linear(in_features=64, out_features=dz, bias=True)

(32) CELU(alpha=1.0)

z ∈ Rdz

Layer DECODER

(0) Linear(in_features=dz, out_features=64, bias=True)

(1) CELU(alpha=1.0)

(2) ViewModule()

(3) ConvTranspose2d(2, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(4) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(5) CELU(alpha=1.0)

(6) ConvTranspose2d(20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(7) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(8) CELU(alpha=1.0)

(9) ConvTranspose2d(20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(10) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(11) CELU(alpha=1.0)

(12) ConvTranspose2d(20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(13) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(14) CELU(alpha=1.0)

(15) ConvTranspose2d(20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(16) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(17) CELU(alpha=1.0)

(18) ConvTranspose2d(20, 4, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(19) interpolationLayer()

(20) 1 + 0.5 Tanh()

Latent dimension dz {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16}

Training times [minutes]

Min Mean Max

1080 1081 1083

Table D.12: CNN Autoencoder of LED for the flow past a cylinder at Re ∈
{100, 1000}

D.3 viscous flow past a cylinder 209

Hyperparameter Values

Optimizer Adabelief

Batch size 32

Initial learning rate 0.001

Max Epochs 1000

BPTT sequence length κ2 {10, 25}
Warm-up steps 10

Prediction horizon 1000

RNN Cell LSTM

Number of RNN layers 1

Size of RNN layers {32, 64}
Scaling [0, 1]

Training times [minutes]

Min Mean Max

722 723 724

Table D.13: LED (LSTM-RNN) hyperparameters and training times for the flow
past a cylinder example

Hyper-parameter tuning Values for Re = 100 Values for Re = 1000

Solver Pseudoinverse Pseudoinverse

Size 200 200

Degree 10 10

Radius 0.99 0.99

Input scaling σ {0.5, 1, 2} {0.5, 1, 2}
Dynamics length 100 100

Regularization η̃ {0.0, 0.001, 0.0001, 0.00001} {0.0, 0.001, 0.0001, 0.00001}
Noise level per mill {10} {10}

Training times [minutes]

Min Mean Max

1.2 1.4 1.92

Table D.14: Reservoir Computer hyperparameters and training times (in CNN-
RC) for flow past a cylinder example

210 learning effective dynamics

Hyper-parameter tuning Values for Re = 100 Values for Re = 1000

Library Polynomials Polynomials

Degree {1, 2, 3} {1, 2, 3}
Threshold {0.001, 0.0001, 0.00001} {0.001, 0.0001, 0.00001}

Training times [minutes]

Min Mean Max

1.14 1.55 2.05

Table D.15: SINDy hyperparameters and training times (in CNN-SINDy) for
flow past a cylinder example

E
L E D F O R M O L E C U L A R S Y S T E M S

e.1 müller-brown potential

The MBP has the form

V(x) =
4

∑
k=1

Ak exp
(
αk(x1 − X̂1,k)+

bk(x1 − X̂1,k)(x2 − X̂2,k)+

ck(x2 − X̂2,k)
)
,

(E.1)

where x = [x1, x2]
T is the position. The parametrization

α = [−1,−1,−6.5, 0.7]T ,

b = [0, 0, 11, 0.6]T ,

c = [−10,−10,−6.5, 0.7]T ,

A = [−200,−100,−170, 15]T ,

X̂ =

[
1 0 −0.5 −1

0 0.5 1.5 1

]
,

(E.2)

is followed according to Ref. Müller et al., 1979.

e.1.1 Definition of Metastable States

The metastable states of the MB potential are defined as ellipses in the
x ∈ R2 space. The centers and axes given in Table E.1.

e.1.2 LED Hyperparameters

In order to prepare the dataset for training, validation, and testing of the
LED in the MBP, 96 initial conditions are sampled from x ∈ [−1.5, 1.2]×
[−0.2, 2]. The dynamics are solved with the Velocity Verlet algorithm, with

211

212 led for molecular systems

State Center (x1, x2) Axes α, β) θ

0 (−0.57, 1.45) (0.15, 0.3) π/4

1 (0.45, 0.05) (0.35, 0.15) 0

Table E.1: Metastable states in the MBP modeled as ellipses x2
1/α2 + x2

2/β2 ≤ 1.
The ellipses are rotated by θ.

timestep δt = 10−2 up to T = 5000, after an initial transient period of
T̃ = 103 discarded from the data. The data are sub-sampled to ∆t = 0.5,
keeping every 50

th data points. In this way, 96 trajectories of N = 104

samples, each corresponding to T = 5000 time units are created. LED is
trained on 32 of these trajectories. 32 trajectories are used for validation,
while all 96 trajectories are used for testing.

The number and size of hidden layers are the same for the encoder E ,
the decoder D, and the latent MDN Z . In the first phase, the MDN-AE
is trained, tuning its hyperparameters based on a grid search reported
in Table E.2. The autoencoder with the smallest error on the state statistics
on the validation dataset is picked. Next, the MDN-LSTM is trained, tuning
its hyperparameters based on a grid search reported in Table E.3. The LED
model with the smallest error on the state statistics on the validation dataset
is picked. Both networks are trained with validation-based early stopping.
The LED is tested on the total 96 initial conditions. For more information
of the training technicalities the interested reader is referred to Ref. P. R.
Vlachas, Arampatzis, et al., 2022.

e.1.3 Timescales in the LED Latent Space

The latent space learned by LED can be utilized to identify low-energy
metastable states without the need for prior knowledge. The definition of
the metastable states in the rotationally and translationally invariant space
constitutes such prior knowledge. Minima in the free energy projection on
the LED latent space constitute probable metastable states.

The trajectories sampled with LED are clustered based on these latent
metastable clusters depicted in Figure 4 (main text). An MSM is fitted on
the clustered trajectories. The time-lag of the MSM is set to 100 time units
to ensure Markovianity. The timescales computed by MSM are T0→1 = 49
and T1→0 = 321. LED is overestimating T1→0 and underestimating T0→1.

E.1 müller-brown potential 213

Hyperparameter Values

Batch size 32

Initial learning rate 0.001

Weight decay rate {0, 10−5}
Number of AE layers {2, 3}

Size of AE layers {10, 20, 40}
Activation of AE layers selu, tanh

Latent dimension {1}
Input/Output data scaling [0, 1]

MDN-AE kernels {2, 3}
MDN-AE hidden units 50

MDN-AE multivariate 1

MDN-AE covariance scaling factor {0.4, 0.6, 0.8}

Table E.2: Hyperparameter tuning of AE for MBP

Hyperparameter Values

Batch size 32

Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 5, 6}
MDN-LSTM hidden units {10, 20}
MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table E.3: Hyperparameter tuning of LSTM for MBP

214 led for molecular systems

Hyperparameter Values

Number of AE layers 3

Size of AE layers 40

Activation of AE layers tanh

Latent dimension 1

MDN-AE kernels 3

MDN-AE hidden units 50

MDN-AE multivariate 1

MDN-AE covariance scaling factor 0.6

Weight decay rate 0.0

BPTT sequence length 400

Number of LSTM layers 1

Size of LSTM layers 20

Activation of LSTM Cell tanh

MDN-LSTM kernels 4

MDN-LSTM hidden units 20

MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.4

Table E.4: Hyperparameters of LED model with lowest validation error on MBP

E.1 müller-brown potential 215

The order of the timescales, however, is captured. In contrast, an MSM with
a time-lag of ∆t = 0.5, which is the timestep of the LED, fails to capture
the order of the timescales due to the violated Markovianity assumption
(T0→1 = 3 and T0→1 = 21).

216 led for molecular systems

e.2 trp cage

e.2.1 LED Hyperparameters

In the LED architecture, the number and size of hidden layers are the same
for the encoder E , the decoder D, and the latent MDN Z . The MDN-AE
is trained, tuning its hyperparameters based on the grid search reported
in Table E.5. The latent space of the MDN-AE is z ∈ R2, i.e., dz = 2. The
MDN-AE model with the lowest error on the state statistics in the validation
dataset is picked. Then, the MDN-AE is coupled with the MDN-LSTM as
LED. The MDN-LSTM is trained to minimize the latent data likelihood.
The hyperparameters of the MDN-LSTM are tuned according to the grid
search reported in Table E.6. The LED model with the lowest error on the
state statistics in the validation dataset is selected. Its hyperparameters are
reported in Table E.7. The LED is tested in 248 initial conditions randomly
sampled from the testing data. Starting from these initial conditions, we
utilize the iterative propagation in the latent space of the LED to forecast
T = 400ps.

Hyperparameter Values

Batch size 32

Initial learning rate 10−3

Weight decay rate {0, 10−4, 10−5, 10−6}
Number of AE layers {4, 6}

Size of AE layers {100, 200, 500}
Activation of AE layers selu, tanh

Latent dimension 2

Input/Output data scaling [0, 1]

MDN-AE kernels {3, 4, 5}
MDN-AE hidden units {20, 50}

MDN-AE covariance scaling factor 0.8

Table E.5: Hyperparameter tuning of AE for Trp Cage

E.2 trp cage 217

Hyperparameter Values

Batch size 32

Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 8, 12, 24}
MDN-LSTM hidden units {10, 20, 40, 80}
MDN-LSTM multivariate {0, 1}

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table E.6: Hyperparameter tuning of LSTM for Trp Cage

e.2.2 Marginal State Distributions

The marginal distributions of the trajectories generated by LED match the
ground-truth ones (MD data) closely, as depicted in Figure E.1. In Figure E.2,
a sample from MD data of the TRP cage is compared with a close sample
(in terms of the latent space) of LED. The RMSD is 2.784Å.

218 led for molecular systems

Hyperparameter Values

Number of AE layers 6

Size of AE layers 500

Activation of AE layers tanh

Latent dimension 2

MDN-AE kernels 5

MDN-AE hidden units 50

MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8

Weight decay rate 0

BPTT sequence length 400

Number of LSTM layers 1

Size of LSTM layers 40

Activation of LSTM Cell tanh

MDN-LSTM kernels 4

MDN-LSTM hidden units 20

MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.2

Table E.7: Hyperparameters of LED model with lowest validation error on Trp
Cage

E.2 trp cage 219

−2.5 0.0 2.5
x351

0.0

0.5

1.0

1.5

2.0

f x
3
5
1
(x

35
1
)

0 1 2
x352

0.0

0.5

1.0

1.5

f x
3
5
2
(x

35
2
)

−2.5 0.0 2.5
x353

0

1

2

3

f x
3
5
3
(x

35
3
)

−0.5 0.0 0.5
x354

0

1

2

3

f x
3
5
4
(x

35
4
)

−2.5 0.0 2.5
x355

0

1

2

3

f x
3
5
5
(x

35
5
)

Target Density

Predicted Density

−2.5 0.0 2.5
x356

0

1

2

3

f x
3
5
6
(x

35
6
)

−0.5 0.0 0.5
x357

0

1

2

3

f x
3
5
7
(x

35
7
)

−0.5 0.0 0.5
x358

0

1

2

3

f x
3
5
8
(x

35
8
)

−2.5 0.0 2.5
x359

0.0

0.5

1.0

1.5

2.0

f x
3
5
9
(x

35
9
)

−2.5 0.0 2.5
x360

0.0

0.5

1.0

1.5

f x
3
6
0
(x

36
0
)

Target Density

Predicted Density

−2.5 0.0 2.5
x361

0.0

0.5

1.0

1.5

2.0

f x
3
6
1
(x

36
1
)

−1 0
x362

0.0

0.5

1.0

1.5

2.0

f x
3
6
2
(x

36
2
)

−2.5 0.0 2.5
x363

0

1

2

3

f x
3
6
3
(x

36
3
)

−2.5 0.0 2.5
x364

0.0

0.5

1.0

1.5

2.0

f x
3
6
4
(x

36
4
)

−2.5 0.0 2.5
x365

0.0

0.5

1.0

1.5

f x
3
6
5
(x

36
5
)

Target Density

Predicted Density

−2.5 0.0 2.5
x366

0.0

0.5

1.0

f x
3
6
6
(x

36
6
)

−2.5 0.0 2.5
x367

0.0

0.5

1.0

f x
3
6
7
(x

36
7
)

−2 −1
x368

0.0

0.5

1.0

1.5

2.0

f x
3
6
8
(x

36
8
)

−2.5 0.0 2.5
x369

0.0

0.5

1.0

1.5

2.0

f x
3
6
9
(x

36
9
)

−1 0
x370

0.0

0.5

1.0

1.5

2.0

f x
3
7
0
(x

37
0
)

Target Density

Predicted Density

−2.5 0.0 2.5
x371

0

1

2

3

f x
3
7
1
(x

37
1
)

−2.5 0.0 2.5
x372

0.0

0.5

1.0

1.5

2.0

f x
3
7
2
(x

37
2
)

0.5 1.0 1.5
x373

0

1

2

3

f x
3
7
3
(x

37
3
)

−2.5 0.0 2.5
x374

0.0

0.5

1.0

1.5

2.0

f x
3
7
4
(x

37
4
)

−2.5 0.0 2.5
x375

0

1

2

f x
3
7
5
(x

37
5
)

Target Density

Predicted Density

Figure E.1: Plot of the marginal state distributions s351 − s375 in the Trp Cage
miniprotein. Comparison of the state distributions estimated from
the MD data (test dataset) and from trajectories sampled from LED.

220 led for molecular systems

MD DATA

RMSD ≈ 2.784

LED

Figure E.2: Trp Cage protein configurations found in the MD data compared to
a sample of LED that is in close proximity in the latent space. The
RMSD error between the two configurations is 2.784Å.

E.3 alanine dipeptide 221

e.3 alanine dipeptide

A molecule of alanine dipeptide in water is simulated with MD Guzman et
al., 2019. The peptide is modeled with the AMBER03 force field Duan et al.,
2003, while the water is modeled with TIP3P/Fs Schmitt et al., 1999. The
Velocity Verlet algorithm is employed for the integration. The simulation
domain is a cubic box (edge length 2.7 nm) with periodic boundary condi-
tions and minimum image convention. The temperature is maintained at
298 K with a local Langevin thermostat Grest et al., 1986, with the value of
the friction constant equal to 1.0/ps. The cutoff distance for the nonbonded
interactions is rc = 0.9 nm. The reaction field method Neumann, 1985 is
used for the electrostatic interaction beyond the cutoff, with the dielectric
permittivity of inner and outer regions equal to 1 and 80, respectively.

A timestep of δt = 1fs is considered, and the dynamics are integrated
up to a total time of T = 100ns, creating a dataset with a total of 108 data
samples. The data are subsampled, keeping every 100th data points, creating
a trajectory with N = 106 samples. The coarse timestep of LED is thus
∆t = 0.1ps. The protein positions are transformed into rototranslational
invariant features (internal coordinates), composed of bonds, angles, and
dihedral angles. The data are split to 248 trajectories of 4000 samples (each
trajectory corresponds to T = 400ps of MD data), discarding the remaining
data. The first 96 trajectories (corresponding to a total of 38.4ns of MD data)
are used for training and the subsequent 96 trajectories for validation. All
248 initial conditions are used for testing.

e.3.1 Metastable State Definition

The protein is considered to lie in each of the five metastable states
{C5, PI I , αR, αL, Cax

7 } if the distance in the Ramachandran plot between
the protein state and the metastable state center is smaller than 10 degrees.
The metastable state centers are defined in Table E.8.

e.3.2 LED Hyperparameters

Regarding the LED architecture, the number and size of hidden layers are
the same for the encoder E , the decoder D, and the latent MDN Z . The
MDN-AE is trained, tuning its hyperparameters based on the grid search
reported in Table E.9. The latent space of the MDN-AE is z ∈ R2, i.e.,

222 led for molecular systems

Metastable state Center (φ, ψ)

PI I (−75, 150)

C5 (−155, 155)

αR (−75,−20)

αL (67, 5)

Cax
7 (70, 160)

Table E.8: Centers of the metastable states in the Ramachandran plot.

dz = 1. The MDN-AE model with the lowest validation error on the state
statistics is picked. Then, the MDN-AE is coupled with the MDN-LSTM
in LED. The MDN-LSTM is trained to minimize the latent data likelihood.
The hyperparameters of the MDN-LSTM are tuned according to the grid
search reported in Table E.10. The LED model with the lowest error on the
state statistics in the validation dataset is selected. Its hyperparameters are
reported in Table E.11. The LED is tested in 248 initial conditions randomly
sampled from the testing data. Starting from these initial conditions, we
utilize the iterative propagation in the latent space of the LED to forecast
T = 400ps.

e.3.3 Marginal State Distributions

The marginal distributions of the trajectories generated by LED match the
ground-truth ones (MD data) closely, as depicted in Figure E.3.

In Figure E.4, a configuration randomly sampled from MD data is given
for each metastable state. The closest configuration sampled from LED is
compared with the MD data sample in terms of the Root Mean Square
Deviation (RMSD) score. The LED samples realistic configurations with low
RMSD errors for all metastable states. The mean and standard deviation
of the RMSD scores of the 10 closest neighbors sampled from LED are
µ± σ = 0.148± 0.021Å for the C5 MD sample configuration (Figure E.4
top left). This score for the rest of the metastable states is 0.340± 0.463Å
for PI I , 0.101± 0.019Å for αR, 0.885± 0.162Å for αL, and 0.383± 0.125Å for
Cax

7 . The LED samples similar configurations with low RMSD scores for
the most frequently observed metastable states {C5, PI I , αR}. The average

E.3 alanine dipeptide 223

Hyperparameter Values

Batch size 32

Initial learning rate 10−3

Weight decay rate {0, 10−5}
Number of AE layers {4, 6}

Size of AE layers {50, 100}
Activation of AE layers selu, tanh

Latent dimension 2

Input/Output data scaling [0, 1]

MDN-AE kernels 5

MDN-AE hidden units {20, 50}
MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8

Table E.9: Hyperparameter tuning of AE for alanine dipeptide

Hyperparameter Values

Batch size 32

Initial learning rate 10−3

BPTT sequence length {200, 400}
Number of LSTM layers 1

Size of LSTM layers {10, 20, 40}
Activation of LSTM Cell tanh

MDN-LSTM kernels {4, 5, 6}
MDN-LSTM hidden units {10, 20}
MDN-LSTM multivariate {0, 1}

MDN-LSTM covariance scaling factor {0.1, 0.2, 0.3, 0.4}

Table E.10: Hyperparameter tuning of LSTM for alanine dipeptide

224 led for molecular systems

Hyperparameter Values

Number of AE layers 4

Size of AE layers 50

Activation of AE layers tanh

Latent dimension 2

MDN-AE kernels 5

MDN-AE hidden units 50

MDN-AE multivariate 0

MDN-AE covariance scaling factor 0.8

Weight decay rate 0

BPTT sequence length 400

Number of LSTM layers 1

Size of LSTM layers 20

Activation of LSTM Cell tanh

MDN-LSTM kernels 5

MDN-LSTM hidden units 20

MDN-LSTM multivariate 0

MDN-LSTM covariance scaling factor 0.4

Table E.11: Hyperparameters of LED model with lowest validation error on
alanine dipeptide

E.3 alanine dipeptide 225

RMSD error is slightly higher and fluctuates more for the less frequently
observed {αR, Cax

7 }.

e.3.4 Metastable States on the Latent Space and Mean First Passage Times

The metastable states can be defined on the latent space of LED by projecting
the free energy on the latent space and identifying the local minima. This
alleviates the need for expert knowledge (definition of the metastable states).
The MFPTs between the metastable states on the latent space of the LED are
compared with the MFPTs between the corresponding metastable states on
the Ramachadran space in Table E.12. Note that the results depend on how
the latent metastable states are defined. However, in order to capture the
order of the timescales without the need of prior expert knowledge, a rough
approximation (small region around the minima in the latent space) is
adequate. The LED is able to capture the order of the timescales, alleviating
the need for expert knowledge on the definition of the metastable states.

Metastable states on Metastable states on
Ramachandran Space LED Latent Space

MFPT
MSM− 10ps MSM− 10ps MSM− 10ps
on MD data on LED− 0.1ps data on LED− 0.1ps data

[ns] Reference MFPT Error (%) MFPT Error (%)

TC5→PII
0.105 0.103 2 0.143 36

TC5→αR
0.104 0.082 21 0.124 19

TPII→C5
0.226 0.242 7 0.356 57

TPII→αR
0.105 0.083 21 0.123 18

TαR→C5 0.236 0.258 9 0.361 53
TαR→PII

0.116 0.119 2 0.148 27

Average Relative Error 10.51% 35.21%

Table E.12: Mean first-passage times (MFPT) between the metastable states of ala-
nine dipeptide in water in [ns]. MFPTs are estimated by fitting MSMs
with a time-lag of 10ps on MD trajectories. In LED, the metastable
states are considered as regions around the local minima of the free
energy projection on the latent space. The average relative error is
given for reference.

226 led for molecular systems

0.14 0.15
x1

0

20

40

60

80

100

120

f x
1
(x

1
)

Target Density Predicted Density

0.125 0.130 0.135 0.140
x2

0

25

50

75

100

125

150

f x
2
(x

2
)

Target Density Predicted Density

0.115 0.120 0.125 0.130
x3

0

25

50

75

100

125

150

175

f x
3
(x

3
)

Target Density Predicted Density

0.15 0.16
x4

0

20

40

60

80

100

120

f x
4
(x

4
)

Target Density Predicted Density

0.15 0.16
x5

0

20

40

60

80

100

120

f x
5
(x

5
)

Target Density Predicted Density

0.14 0.15
x6

0

20

40

60

80

100

120

f x
6
(x

6
)

Target Density Predicted Density

0.125 0.130 0.135 0.140 0.145
x7

0

25

50

75

100

125

150

f x
7
(x

7
)

Target Density Predicted Density

0.115 0.120 0.125 0.130
x8

0

25

50

75

100

125

150

175

f x
8
(x

8
)

Target Density Predicted Density

0.14 0.15 0.16
x9

0

20

40

60

80

100

120

f x
9
(x

9
)

Target Density Predicted Density

2.0 2.2 2.4
x10

0

1

2

3

4

5

6

7

f x
1
0
(x

10
)

Target Density Predicted Density

1.9 2.0 2.1 2.2 2.3
x11

0

2

4

6

8

f x
1
1
(x

11
)

Target Density Predicted Density

1.9 2.0 2.1 2.2
x12

0

2

4

6

8

f x
1
2
(x

12
)

Target Density Predicted Density

1.8 2.0 2.2
x13

0

1

2

3

4

5

6

f x
1
3
(x

13
)

Target Density Predicted Density

1.8 2.0 2.2
x14

0

1

2

3

4

5

6

7

f x
1
4
(x

14
)

Target Density Predicted Density

2.0 2.2 2.4
x15

0

1

2

3

4

5

6

7

f x
1
5
(x

15
)

Target Density Predicted Density

2.0 2.1 2.2 2.3
x16

0

2

4

6

8

f x
1
6
(x

16
)

Target Density Predicted Density

1.9 2.0 2.1 2.2
x17

0

2

4

6

8

f x
1
7
(x

17
)

Target Density Predicted Density

−0.5 0.0 0.5
x18

0.0

0.5

1.0

1.5

2.0

f x
1
8
(x

18
)

Target Density Predicted Density

−2 0 2
x19

0.0

0.5

1.0

1.5

2.0

f x
1
9
(x

19
)

Target Density Predicted Density

−2 0 2
x20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f x
2
0
(x

20
)

Target Density Predicted Density

−2 0 2
x21

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f x
2
1
(x

21
)

Target Density Predicted Density

−2 0 2
x22

0.0

0.2

0.4

0.6

0.8

1.0

f x
2
2
(x

22
)

Target Density Predicted Density

−1.0 −0.5 0.0 0.5
x23

0.0

0.5

1.0

1.5

2.0

f x
2
3
(x

23
)

Target Density Predicted Density

−2 0 2
x24

0.0

0.5

1.0

1.5

2.0

f x
2
4
(x

24
)

Target Density Predicted Density

Figure E.3: A plot of the marginal state distributions. Comparison of the state
distributions estimated from the MD data (test dataset) and from
trajectories sampled from LED.

E.3 alanine dipeptide 227

C5

MD DATA

RMSD Å≈ 0.121

LED

PII

MD DATA

RMSD Å≈ 0.125

LED

αR

MD DATA LED

RMSD Å≈ 0.091 αL

MD DATA LED

RMSD Å≈ 0.548

Figure E.4: For each metastable state, a random alanine dipeptide configuration
sampled from MD data is compared against the closest configuration
sampled from the LED with dz = 1. The Root Mean Square Deviation
(RMSD) in Å between the two is plotted for reference.

B I B L I O G R A P H Y

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, and X. Zheng (2016). “Tensorflow: a system for large-scale
machine learning”. In: 12th usenix symposium on operating systems design
and implementation (osdi 16), 265.

Abarbanel, H. (2012). Analysis of observed chaotic data. Springer Science &
Business Media.

Abdollahzade, M., A. Miranian, H. Hassani, and H. Iranmanesh (2015).
“A new hybrid enhanced local linear neuro-fuzzy model based on the
optimized singular spectrum analysis and its application for nonlinear
and chaotic time series forecasting”. In: Information sciences 295, 107.

Ahmad, A. M., S. Ismail, and D. Samaon (2004). “Recurrent neural network
with backpropagation through time for speech recognition”. In: Ieee
international symposium on communications and information technology, 2004.
iscit 2004. Vol. 1. Ieee, 98.

Alexandridis, A. K. and A. D. Zapranis (2013). “Wavelet neural networks: a
practical guide”. In: Neural networks 42, 1.

Alipanahi, B., A. Delong, M. T. Weirauch, and B. J. Frey (2015). “Predict-
ing the sequence specificities of dna-and rna-binding proteins by deep
learning”. In: Nat. biotechnol. 33.8, 831.

Allgaier, N. A., K. D. Harris, and C. M. Danforth (2012). “Empirical correc-
tion of a toy climate model”. In: Phys. rev. e 85.2, 026201.

Alnæs, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-
son, J. Ring, M. E. Rognes, and G. N. Wells (2015). “The fenics project
version 1.5”. In: Archive of numerical software 3.100.

Andrychowicz, O. M., B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al. (2020).
“Learning dexterous in-hand manipulation”. In: The internatl. j. (wash.) of
robotics research 39.1, 3.

Antonik, P., M. Haelterman, and S. Massar (2017). “Brain-inspired photonic
signal processor for generating periodic patterns and emulating chaotic
systems”. In: Phys. rev. applied 7 (5), 054014.

229

230 bibliography

Arbabi, H. and I. Mezic (2017). “Ergodic theory, dynamic mode decomposi-
tion, and computation of spectral properties of the koopman operator”.
In: Siam j. appl. dyn. syst. 16.4, 2096.

Arjovsky, M., A. Shah, and Y. Bengio (2016). “Unitary evolution recurrent
neural networks”. In: Proceedings of the 33rd international conference on
international conference on machine learning - volume 48. Icml’16. New York,
NY, USA: JMLR.org, 1120.

Ayaz, C., L. Tepper, F. N. Brünig, J. Kappler, J. O. Daldrop, and R. R. Netz
(2021). “Non-markovian modeling of protein folding”. In: Proc. natl. acad.
sci. u.s.a. 118.31.

Ayton, G. S., W. G. Noid, and G. A. Voth (2007). “Multiscale modeling of
biomolecular systems: in serial and in parallel”. In: Curr. opin. struct. biol.
17, 192.

Bae, H. J. and P. Koumoutsakos (2021). “Scientific multi-agent reinforce-
ment learning for wall-models of turbulent flows”. In: Arxiv preprint
arxiv:2106.11144.

Bakker, B. (2002). “Reinforcement learning with long short-term memory”.
In: Adv. neural inf. process. syst. 1475.

Baldi, P., P. Sadowski, and D. Whiteson (2014). “Searching for exotic particles
in high-energy physics with deep learning”. In: Nat. commun. 5.1, 1.

Balsera, M. A., W. Wriggers, Y. Oono, and K. Schulten (1996). “Principal
component analysis and long time protein dynamics”. In: J. phys. chem.
100.7, 2567.

Bar-Sinai, Y., S. Hoyer, J. Hickey, and M. P. Brenner (2019). “Learning data-
driven discretizations for partial differential equations”. In: Proc. natl.
acad. sci. u.s.a. 116.31, 15344.

Bartók, A. P., S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and
M. Ceriotti (2017). “Machine learning unifies the modeling of materials
and molecules”. In: Sci. adv. 3.12, e1701816.

Basnarkov, L. and L. Kocarev (2012). “Forecast improvement in lorenz 96

system”. In: Nonlinear processes geophys. 19.5, 569.
Behler, J. and M. Parrinello (2007). “Generalized neural-network representa-

tion of high-dimensional potential-energy surfaces”. In: Phys. rev. lett. 98,
146401.

Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019). “Reconciling modern
machine-learning practice and the classical bias–variance trade-off”. In:
Proc. natl. acad. sci. u.s.a. 116.32, 15849.

Bellomo, N. and C. Dogbe (2011). “On the modeling of traffic and crowds: a
survey of models, speculations, and perspectives”. In: Siam rev. 53.3, 409.

bibliography 231

Bengio, S., O. Vinyals, N. Jaitly, and N. Shazeer (2015). “Scheduled sampling
for sequence prediction with recurrent neural networks”. In: Adv. neural
inf. process. syst. 28, 1171.

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term depen-
dencies with gradient descent is difficult”. In: Trans. neur. netw. 5.2, 157.

Bertasius, G., H. Wang, and L. Torresani (2021). “Is space-time attention all
you need for video understanding?” In: Arxiv preprint arxiv:2102.05095.

Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine (2021).
“Enforcing analytic constraints in neural networks emulating physical
systems”. In: Phys. rev. lett. 126.9, 098302.

Bhatia, H., T. S. Carpenter, H. I. Ingólfsson, G. Dharuman, P. Karande, S.
Liu, T. Oppelstrup, C. Neale, F. C. Lightstone, B. Van Essen, et al. (2021).
“Machine-learning-based dynamic-importance sampling for adaptive
multiscale simulations”. In: Nat. mach. intell. 3.5, 401.

Bianchi, F. M., E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen
(2017). “An overview and comparative analysis of recurrent neural net-
works for short term load forecasting”. In: Corr abs/1705.04378. arXiv:
1705.04378.

Bishop, C. M. (1994). “Mixture density networks”. In: Technical report
ncrg/97/004, neural computing research group, aston university.

Bishop, C. M. (2006). “Pattern recognit.” In: Machine learning 128.9.
Bittracher, A., R. Banisch, and C. Schütte (2018). “Data-driven computation

of molecular reaction coordinates”. In: J. chem. phys. 149, 154103.
Bittracher, A., S. Klus, B. Hamzi, P. Koltai, and C. Schütte (2021). “Dimen-

sionality reduction of complex metastable systems via kernel embeddings
of transition manifolds”. In: J nonlinear sci 31.1, 1.

Bittracher, A., P. Koltai, S. Klus, R. Banisch, M. Dellnitz, and C. Schütte
(2018). “Transition manifolds of complex metastable systems”. In: J. non-
linear sci. 28.2, 471.

Blonigan, P. J., M. Farazmand, and T. P. Sapsis (2019). “Are extreme dissipa-
tion events predictable in turbulent fluid flows?” In: Phys. rev. fluids 4.4,
044606.

Blonigan, P. J. and Q. Wang (2014). “Least squares shadowing sensitivity
analysis of a modified kuramoto–sivashinsky equation”. In: Chaos, solitons
& fractals 64, 16.

Bonati, L., V. Rizzi, and M. Parrinello (2020). “Data-driven collective vari-
ables for enhanced sampling”. In: J. phys. chem. lett. 11, 2998.

Bongard, J. and H. Lipson (2007). “Automated reverse engineering of non-
linear dynamical systems”. In: Proc. natl. acad. sci. u.s.a. 104.24, 9943.

https://arxiv.org/abs/1705.04378

232 bibliography

Boninsegna, L., G. Gobbo, F. Noé, and C. Clementi (2015). “Investigating
molecular kinetics by variationally optimized diffusion maps”. In: J. chem.
theory comput. 11.12, 5947.

Bost, C., G.-H. Cottet, and E. Maitre (2010). “Convergence analysis of a
penalization method for the three-dimensional motion of a rigid body in
an incompressible viscous fluid”. In: Siam j. numer. anal. 48.4, 1313.

Bowman, S. R., L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio
(2015). “Generating sentences from a continuous space”. In: Arxiv preprint
arxiv:1511.06349.

Bradley, E. and H. Kantz (2015). “Nonlinear time-series analysis revisited”.
In: Chaos: an interdisciplinary j nonlinear sci 25.9, 097610.

Brooks, B. and M. Karplus (1983). “Harmonic dynamics of proteins: normal
modes and fluctuations in bovine pancreatic trypsin inhibitor”. In: Pnas
80.21, 6571.

Broomhead, D. S. and D. Lowe (1988). Radial basis functions, multi-variable
functional interpolation and adaptive networks. Tech. rep. Royal Signals and
Radar Establishment Malvern (United Kingdom).

Brunton, S. L., B. R. Noack, and P. Koumoutsakos (2019). “Machine learning
for fluid mechanics”. In: Annu. rev. fluid mech. 52, 477.

Brunton, S. L., B. R. Noack, and P. Koumoutsakos (2020). “Machine learning
for fluid mechanics”. In: Annu. rev. fluid mech. 52, 477.

Brunton, S. L., J. L. Proctor, and J. N. Kutz (2016). “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems”. In: Proc. natl. acad. sci. u.s.a. 113.15, 3932.

Buchete, N.-V. and G. Hummer (2008). “Coarse master equations for peptide
folding dynamics”. In: J. phys. chem. b 112, 6057.

Butler, K. T., D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh (2018).
“Machine learning for molecular and mater. sci.” In: Nature 559, 547.

Cao, L., Y. Hong, H. Fang, and G. He (1995). “Predicting chaotic time series
with wavelet networks”. In: Physica d 85.1, 225.

Car, R. and M. Parrinello (1985). “Unified approach for molecular dynamics
and density-functional theory”. In: Phys. rev. lett. 55.22, 2471.

Castrejon, L., N. Ballas, and A. Courville (2019). “Improved conditional
vrnns for video prediction”. In: Proceedings of the ieee international confer-
ence on computer vision, 7608.

Chakraborty, B. and S. A. Murphy (2014). “Dynamic treatment regimes”.
In: Annual review of statistics and its application 1, 447.

bibliography 233

Champion, K. P., S. L. Brunton, and J. N. Kutz (2019). “Discovery of nonlin-
ear multiscale systems: sampling strategies and embeddings”. In: Siam j.
appl. dyn. syst. 18.1, 312.

Chatzis, S. P. and Y. Demiris (2011). “Echo state gaussian process”. In: Ieee
transactions on neural networks 22.9, 1435.

Chekmarev, D. S., T. Ishida, and R. M. Levy (2004). “Long-time conforma-
tional transitions of alanine dipeptide in aqueous solution: continuous
and discrete-state kinetic models”. In: J. phys. chem. b 108, 19487.

Chen, H., O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke (2018). “The
rise of deep learning in drug discovery”. In: Drug discovery today 23.6,
1241.

Chen, W., H. Sidky, and A. L. Ferguson (2019). “Nonlinear discovery of
slow molecular modes using state-free reversible vampnets”. In: J. chem.
phys. 150, 214114.

Cheng, B., E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti (2019). “Ab
initio thermodynamics of liquid and solid water”. In: Pnas 116, 1110.

Chiavazzo, E., C. W. Gear, C. J. Dsilva, N. Rabin, and I. G. Kevrekidis (2014).
“Reduced models in chemical kinetics via nonlinear data-mining”. In:
Processes 2.1, 112.

Chmiela, S., H. E. Sauceda, K.-R. Müller, and A. Tkatchenko (2018). “To-
wards exact molecular dynamics simulations with machine-learned force
fields”. In: Nat. commun. 9, 1.

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio (2014). “Learning phrase representations using
rnn encoder–decoder for statistical machine translation”. In: Proceedings
of the 2014 conference on empirical methods in natural language processing
(emnlp). Doha, Qatar: Association for Computational Linguistics, 1724.

Chui, C. K., J. M. Lemm, and S. Sedigh (1992). An introduction to wavelets.
Vol. 1. Academic press.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2014). “Empirical evaluation
of gated recurrent neural networks on sequence modeling”. English (US).
In: Nips 2014 workshop on deep learning, december 2014.

Chung, J., K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio
(2015). “A recurrent latent variable model for sequential data”. In: Adv.
neural inf. process. syst. 28, 2980.

Coifman, R. R., I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler
(2008). “Diffusion maps, reduction coordinates, and low dimensional
representation of stochastic systems”. In: Multiscale model. simul. 7.2, 842.

234 bibliography

Coifman, R. R. and S. Lafon (2006). “Diffusion maps”. In: Appl. comput.
harmon. anal. 21.1, 5.

Comeau, D., Z. Zhao, D. Giannakis, and A. J. Majda (2017). “Data-driven
prediction strategies for low-frequency patterns of north pacific climate
variability”. In: Climate dyn. 48.5-6, 1855.

Council, N. R. (2012). A national strategy for advancing climate modeling. The
National Academies Press.

Cousins, W. and T. P. Sapsis (2014). “Quantification and prediction of
extreme events in a one-dimensional nonlinear dispersive wave model”.
In: Physica d 280, 48.

Cousins, W. and T. P. Sapsis (2016). “Reduced-order precursors of rare
events in unidirectional nonlinear water waves”. In: J. fluid mech. 790, 368.

Crommelin, D. and A. Majda (2004). “Strategies for model reduction: com-
paring different optimal bases”. In: J. atmos. sci. 61.17, 2206.

Cunningham, J. P. and Z. Ghahramani (2015). “Linear dimensionality re-
duction: survey, insights, and generalizations”. In: The journal of machine
learning research 16.1, 2859.

Cvitanović, P., R. L. Davidchack, and E. Siminos (2010). “On the state space
geometry of the kuramoto–sivashinsky flow in a periodic domain”. In:
Siam j. appl. dyn. syst. 9.1, 1.

Dalcín, L., R. Paz, M. Storti, and J. D’Elía (2008). “Mpi for python: perfor-
mance improvements and mpi-2 extensions”. In: J. parallel distrib. comput.
68.5, 655.

Dalcín, L. D., R. R. Paz, P. A. Kler, and A. Cosimo (2011). “Parallel dis-
tributed computing using python”. In: Advances in water resour. 34.9,
1124.

Davies, A., P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev,
R. Tanburn, P. Battaglia, C. Blundell, A. Juhász, et al. (2021). “Advancing
mathematics by guiding human intuition with ai”. In: Nature 600.7887,
70.

Dechert, W. D. and R. Gençay (1996). “The topological invariance of lya-
punov exponents in embedded dynamics”. In: Physica d nonlinear phenom-
ena 90, 40.

Dellago, C., P. G. Bolhuis, and D. Chandler (1998). “Efficient transition
path sampling: application to lennard-jones cluster rearrangements”. In:
J. chem. phys. 108, 9236.

Deng, Y., F. Bao, Y. Kong, Z. Ren, and Q. Dai (2016). “Deep direct reinforce-
ment learning for financial signal representation and trading”. In: Ieee
trans neural netw learn syst 28.3, 653.

bibliography 235

Dennis, J. M. and H. M. Tufo (2008). “Scaling climate simulation applications
on the ibm blue gene/l system”. In: Ibm j. res. dev. 52.1.2, 117.

Dreyfus, S. (1962). “The numerical solution of variational problems”. In: J.
math. anal 5.1, 30.

Duan, Y., C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang,
P. Cieplak, R. Luo, T. Lee, et al. (2003). “A point-charge force field for
molecular mechanics simulations of proteins based on condensed-phase
quantum mechanical calculations”. In: J. comput. chem. 24.16, 1999.

Duriez, T., S. L. Brunton, and B. R. Noack (2017). Machine learning control-
taming nonlinear dyn. and turbulence. Springer.

Durumeric, A. E. and G. A. Voth (2019). “Adversarial-residual-coarse-
graining: applying machine learning theory to systematic molecular
coarse-graining”. In: J. chem. phys. 151.12, 124110.

Einicke, G. A. and L. B. White (1999). “Robust extended kalman filtering”.
In: Ieee transactions on signal process. 47.9, 2596.

El Saddik, A. (2018). “Digital twins: the convergence of multimedia tech-
nologies”. In: Ieee multimedia 25.2, 87.

Elman, J. L. (1990). “Finding structure in time”. In: Cognitive science 14.2,
179.

Erban, R., I. G. Kevrekidis, D. Adalsteinsson, and T. C. Elston (2006). “Gene
regulatory networks: a coarse-grained, equation-free approach to multi-
scale computation”. In: The j. chem. phys. 124.8, 084106.

Errica, F., D. Bacciu, and A. Micheli (2021). “Graph mixture density net-
works”. In: International conference on machine learning. PMLR, 3025.

Faber, F. A., L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E.
Dahl, O. Vinyals, S. Kearnes, P. F. Riley, and O. A. Von Lilienfeld (2017).
“Prediction errors of molecular machine learning models lower than
hybrid dft error”. In: J. chem. theory comput. 13.11, 5255.

Faller, W. E. and S. J. Schreck (1997). “Unsteady fluid mechanics applications
of neural networks”. In: Journal of aircraft 34.1, 48.

Farazmand, M. and T. P. Sapsis (2016). “Dynamical indicators for the pre-
diction of bursting phenomena in high-dimensional systems”. In: Phys.
rev. e 94.3, 032212.

Farge, M., N. Kevlahan, V. Perrier, and E. Goirand (1996). “Wavelets and
turbulence”. In: Proceedings of the ieee 84.4, 639.

FitzHugh, R. (1961). “Impulses and physiological states in theoretical mod-
els of nerve membrane”. In: Biophys. j. 1.6, 445.

236 bibliography

Forrester, A. I., N. W. Bressloff, and A. J. Keane (2006). “Optimization
using surrogate models and partially converged computational fluid dyn.
simulations”. In: Proc. math. phys. eng. sci. 462.2071, 2177.

Fragkiadaki, K., P. Agrawal, S. Levine, and J. Malik (2015). “Learning visual
predictive models of physics for playing billiards”. In: Arxiv preprint
arxiv:1511.07404.

Frouzakis, C. E., L. Gardini, I. G. Kevrekidis, G. Millerioux, and C. Mira
(1997). “On some properties of invariant sets of two-dimensional nonin-
vertible maps”. In: Internatl. j. (wash.) of bifurcation and chaos 7.06, 1167.

Gal, Y. and Z. Ghahramani (2016). “A theoretically grounded application of
dropout in recurrent neural networks”. In: Advances in neural information
processing systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, and R. Garnett. Curran Associates, Inc., 1019.

Geneva, N. and N. Zabaras (2020). “Modeling the dynamics of pde systems
with physics-constrained deep auto-regressive networks”. In: J. comput.
phys. 403, 109056.

Gers, F. A., D. Eck, and J. Schmidhuber (2002). “Applying lstm to time
series predictable through time-window approaches”. In: Neural nets wirn
vietri-01. Springer, 193.

Gers, F. A., N. N. Schraudolph, and J. Schmidhuber (2002). “Learning
precise timing with lstm recurrent networks”. In: J. mach. learn. res. 3.Aug,
115.

Gicquel, N., J. Anderson, and I. Kevrekidis (1998). “Noninvertibility and
resonance in discrete-time neural networks for time-series processing”.
In: Phys. lett. a 238.1, 8.

Gilmour, D., M. Rembold, and M. Leptin (2017). “From morphogen to
morphogenesis and back”. In: Nature 541.7637, 311.

Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artif. intell. and statistics, 249.

Gonon, L. and J.-P. Ortega (2019). “Reservoir computing universality with
stochastic inputs”. In: Ieee trans neural netw learn syst.

Gonzalez, F. J. and M. Balajewicz (2018). “Deep convolutional recurrent
autoencoders for learning low-dimensional feature dynamics of fluid
systems”. In: Arxiv preprint arxiv:1808.01346.

Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016). Deep learning.
Vol. 1. MIT press Cambridge.

Graves, A., S. Fernández, M. Liwicki, H. Bunke, and J. Schmidhuber (2008).
“Unconstrained online handwriting recognition with recurrent neural

bibliography 237

networks”. In: Advances in neural information processing systems 20, nips
2008.

Graves, A., A.-r. Mohamed, and G. Hinton (2013). “Speech recognition with
deep recurrent neural networks”. In: 2013 ieee international conference on
acoustics, speech and signal process. Ieee, 6645.

Greff, K., R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber
(2016). “Lstm: a search space odyssey”. In: Ieee trans neural netw learn syst
28.10, 2222.

Gregor, K., I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra (2015).
“Draw: a recurrent neural network for image generation”. In: Arxiv
preprint arxiv:1502.04623.

Gregor, K., I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra (2014). “Deep
autoregressive networks”. In: International conference on machine learning.
Pmlr, 1242.

Grest, G. S. and K. Kremer (1986). “Molecular dynamics simulation for
polymers in the presence of a heat bath”. In: Phys. rev. a 33, 3628.

Grigoryeva, L. and J.-P. Ortega (2018). “Echo state networks are universal”.
In: Neural networks 108, 495.

Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, et al. (2018). “Recent advances in convolutional neural
networks”. In: Pattern recognit. 77, 354.

Guzman, H. V., N. Tretyakov, H. Kobayashi, A. C. Fogarty, K. Kreis, J.
Krajniak, C. Junghans, K. Kremer, and T. Stuehn (2019). “Espresso++ 2.0:
advanced methods for multiscale mol. simul.” In: Comput. phys. commun.
238, 66.

Han, J., A. Jentzen, and E. Weinan (2018). “Solving high-dimensional partial
differential equations using deep learning”. In: Proc. natl. acad. sci. u.s.a.
115.34, 8505.

Hansen, K., G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A.
Von Lilienfeld, A. Tkatchenko, and K.-R. Muller (2013). “Assessment
and validation of machine learning methods for predicting molecular
atomization energies”. In: J. chem. theory comput. 9.8, 3404.

Hasegawa, K., K. Fukami, T. Murata, and K. Fukagata (2020). “Machine-
learning-based reduced-order modeling for unsteady flows around bluff
bodies of various shapes”. In: Theor. comput. fluid dyn. 34.4, 367.

Haynes, N. D., M. C. Soriano, D. P. Rosin, I. Fischer, and D. J. Gauthier (2015).
“Reservoir computing with a single time-delay autonomous boolean
node”. In: Phys. rev. e 91 (2), 020801.

238 bibliography

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for
image recognition”. In: Cvpr, 770.

Hejazialhosseini, B., D. Rossinelli, M. Bergdorf, and P. Koumoutsakos (2010).
“High order finite volume methods on wavelet-adapted grids with local
time-stepping on multicore architectures for the simulation of shock-
bubble interactions”. In: J. comput. phys. 229.22, 8364.

Hernández, C. X., H. K. Wayment-Steele, M. M. Sultan, B. E. Husic, and
V. S. Pande (2018). “Variational encoding of complex dynamics”. In: Phys.
rev. e 97.6, 062412.

Hess, B., S. León, N. Van Der Vegt, and K. Kremer (2006). “Long time
atomistic polymer trajectories from coarse grained simulations: bisphenol-
a polycarbonate”. In: Soft matter 2.5, 409.

Higham, D. J. and N. J. Higham (2016). Matlab guide. SIAM.
Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. In:

Neural comput. 9, 1735.
Hochreiter, S. (1991). “Untersuchungen zu dynamischen neuronalen net-

zen”. In: Diploma, technische universität münchen 91.1.
Hochreiter, S. (1998). “The vanishing gradient problem during learning

recurrent neural nets and problem solutions”. In: Internatl. j. (wash.) of
uncertainty, fuzziness and knowledge-based systems 6, 107.

Huber, T., A. E. Torda, and W. F. V. Gunsteren (1994). “Local elevation: a
method for improving the searching properties of molecular dynamics
simulation”. In: J. comput. aided mol. des. 8, 695.

Ichiye, T. and M. Karplus (1991). “Collective motions in proteins: a covari-
ance analysis of atomic fluctuations in molecular dynamics and normal
mode simulations”. In: Proteins 11.3, 205.

Imbalzano, G., A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti (2018).
“Automatic selection of atomic fingerprints and reference configurations
for machine-learning potentials”. In: J. chem. phys. 148.24, 241730.

Inizan, T. J., F. Célerse, O. Adjoua, D. El Ahdab, L.-H. Jolly, C. Liu, P. Ren, M.
Montes, N. Lagarde, L. Lagardère, et al. (2021). “High-resolution mining
of the sars-cov-2 main protease conformational space: supercomputer-
driven unsupervised adaptive sampling”. In: Chem. sci. 12.13, 4889.

Jaeger, H. and H. Haas (2004). “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication”. In: Science
304.5667, 78. eprint: http://science.sciencemag.org/content/304/5667/78.
full.pdf .

http://science.sciencemag.org/content/304/5667/78.full.pdf
http://science.sciencemag.org/content/304/5667/78.full.pdf

bibliography 239

Jang, H. and T. B. Woolf (2006). “Multiple pathways in conformational
transitions of the alanine dipeptide: an application of dynamic importance
sampling”. In: J. comput. chem. 27, 1136.

Jiang, J. and Y.-C. Lai (2019). “Model-free prediction of spatiotemporal
dynamical systems with recurrent neural networks: role of network
spectral radius”. In: Phys. rev. research 1 (3), 033056.

Jing, L., Y. Shen, T. Dubcek, J. Peurifoy, S. A. Skirlo, Y. LeCun, M. Tegmark,
and M. Soljacic (2017). “Tunable efficient unitary neural networks (EUNN)
and their application to rnns”. In: Icml. Vol. 70. Proceedings of Machine
Learning Research. Pmlr, 1733.

Julier, S. J. and J. K. Uhlmann (1997). “New extension of the kalman filter to
nonlinear systems”. In: Signal process., sensor fusion, and target recognition
vi. Vol. 3068. International Society for Optics and Photonics, 182.

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al. (2021). “Highly
accurate protein structure prediction with alphafold”. In: Nature 596.7873,
583.

Kabsch, W. (1976). “A solution for the best rotation to relate two sets of
vectors”. In: Acta crystallogr. a 32, 922.

Kantz, H. and T. Schreiber (1997). Nonlinear time series analysis. New York,
NY, USA: Cambridge University Press.

Kaplan, J. L. and J. A. Yorke (1979). “Chaotic behavior of multidimensional
difference equations”. In: Functional differential equations and approximation
of fixed points. Ed. by H.-O. Peitgen and H.-O. Walther. Berlin, Heidelberg:
Springer Berlin Heidelberg, 204.

Karlin, I. V., S. Ansumali, C. E. Frouzakis, and S. S. Chikatamarla (2006).
“Elements of the lattice boltzmann method i: linear advection equation”.
In: Commun. comput. phys 1.4, 616.

Karplus, M. and J. A. McCammon (2002). “Molecular dynamics simulations
of biomolecules”. In: Nat. struct. mol. biol. 9, 646.

Kassam, A.-K. and L. N. Trefethen (2005). “Fourth-order time-stepping for
stiff pdes”. In: Siam j. sci. comput. 26.4, 1214.

Kerschen, G., J.-c. Golinval, A. F. Vakakis, and L. A. Bergman (2005). “The
method of proper orthogonal decomposition for dynamical character-
ization and order reduction of mechanical systems: an overview”. In:
Nonlinear dyn. 41.1, 147.

Kevrekidis, I. G., C. W. Gear, and G. Hummer (2004). “Equation-free: the
computer-aided analysis of complex multiscale systems”. In: Aiche j. 50.7,
1346.

240 bibliography

Kevrekidis, I. G., C. W. Gear, J. M. Hyman, P. G. Kevrekidid, O. Runborg, C.
Theodoropoulos, et al. (2003). “Equation-free, coarse-grained multiscale
computation: enabling mocroscopic simulators to perform system-level
analysis”. In: Commun math sci 1.4, 715.

Kevrekidis, I. G., B. Nicolaenko, and J. C. Scovel (1990). “Back in the saddle
again: a computer assisted study of the kuramoto–sivashinsky equation”.
In: Siam j. appl. math. 50.3, 760.

Kevrekidis, I. G. and G. Samaey (2009). “Equation-free multiscale computa-
tion: algorithms and applications”. In: Annu. rev. phys. chem. 60, 321.

Kim, K. B., J. B. Park, Y. H. Choi, and G. Chen (2000). “Control of chaotic
dynamical systems using radial basis function network approximators”.
In: Information sciences 130.1-4, 165.

Kim, S.-J., T. J. Crowley, D. J. Erickson, B. Govindasamy, P. B. Duffy, and
B. Y. Lee (2008). “High-resolution climate simulation of the last glacial
maximum”. In: Climate dyn. 31.1, 1.

Kingma, D. P. and J. Ba (2014). “Adam: a method for stochastic optimiza-
tion”. In: Arxiv preprint arxiv:1412.6980.

Kramer, M. A. (1991). “Nonlinear principal component analysis using
autoassociative neural networks”. In: Aiche j. 37.2, 233.

Krischer, K., R. Rico-Martínez, I. Kevrekidis, H. Rotermund, G. Ertl, and
J. Hudson (1993). “Model identification of a spatiotemporally varying
catalytic reaction”. In: Aiche j. 39.1, 89.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2017). “Imagenet classifica-
tion with deep convolutional neural networks”. In: Commun. acm. Nips’12

60.6, 84.
Krueger, D., T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke, A.

Goyal, Y. Bengio, A. C. Courville, and C. J. Pal (2017). “Zoneout: regulariz-
ing rnns by randomly preserving hidden activations”. In: 5th international
conference on learning representations, ICLR 2017, toulon, france, april 24-26,
2017, conference track proceedings.

Kumar, A., T. Islam, Y. Sekimoto, C. Mattmann, and B. Wilson (2020).
“Convcast: an embedded convolutional lstm based architecture for pre-
cipitation nowcasting using satellite data”. In: Plos one 15.3, e0230114.

Kuramoto, Y. (1978). “Diffusion-induced chaos in reaction systems”. In:
Progress of theoretical physics supplement 64, 346.

Kuramoto, Y. and T. Tsuzuki (1976). “Persistent propagation of concen-
tration waves in dissipative media far from thermal equilibrium”. In:
Progress of theoretical physics 55.2, 356.

bibliography 241

Kurth, T., S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, et al. (2018). “Exascale
deep learning for climate analytics”. In: Sc18: international conference for
high performance computing, networking, storage and analysis. Ieee, 649.

Kutz, J. N., S. L. Brunton, B. W. Brunton, and J. L. Proctor (2016). Dynamic
mode decomposition: data-driven modeling of complex systems. SIAM.

Kutz, J. N., X. Fu, and S. L. Brunton (2016). “Multiresolution dynamic mode
decomposition”. In: Siam j. appl. dyn. syst. 15.2, 713.

Laing, C. R., T. Frewen, and I. G. Kevrekidis (2010). “Reduced models for
binocular rivalry”. In: J. comput. neurosci. 28.3, 459.

Laio, A. and M. Parrinello (2002). “Escaping free-energy minima”. In: Pnas
99, 12562.

Lakshminarayanan, B., A. Pritzel, and C. Blundell (2016). “Simple and
scalable predictive uncertainty estimation using deep ensembles”. In:
Arxiv preprint arxiv:1612.01474.

Lange, H., S. L. Brunton, and J. N. Kutz (2021). “From fourier to koopman:
spectral methods for long-term time series prediction.” In: J. mach. learn.
res. 22.41, 1.

Lapedes, A. and R. Farber (1987). Nonlinear signal process. using neural
networks: prediction and system modelling. Tech. rep.

Laptev, N., J. Yosinski, L. E. Li, and S. Smyl (2017). “Time-series extreme
event forecasting with neural networks at uber”. In.

Larger, L., M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L.
Pesquera, C. R. Mirasso, and I. Fischer (2012). “Photonic information
processing beyond turing: an optoelectronic implementation of reservoir
computing”. In: Opt. express 20.3, 3241.

Larger, L., A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo,
and M. Jacquot (2017). “High-speed photonic reservoir computing using
a time-delay-based architecture: million words per second classification”.
In: Phys. rev. x 7 (1), 011015.

LeCun, Y. (1985). “Une procedure d’apprentissage ponr reseau a seuil
asymetrique”. In: Proceedings of cognitiva 85, 599.

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature
521.7553, 436.

Lee, E. H., J. Hsin, M. Sotomayor, G. Comellas, and K. Schulten (2009).
“Discovery through the computational microscope”. In: Structure 17.10,
1295.

Lee, J. A. and M. Verleysen (2007). Nonlinear dimensionality reduction.
Springer Science & Business Media.

242 bibliography

Lee, S., M. Kooshkbaghi, K. Spiliotis, C. I. Siettos, and I. G. Kevrekidis (2020).
“Coarse-scale pdes from fine-scale observations via machine learning”.
In: Chaos: an interdisciplinary j nonlinear sci 30.1, 013141.

Lee, Y. and A. J. Majda (2016). “State estimation and prediction using
clustered particle filters”. In: Proc. natl. acad. sci. u.s.a. 113.51, 14609.

Li, Q., L. Shen, S. Guo, and Z. Lai (2020). “Wavelet integrated cnns for
noise-robust image classification”. In: Proceedings of the ieee/cvf conference
on computer vision and pattern recognit. 7245.

Li, Y., R. Yu, C. Shahabi, and Y. Liu (2017). “Diffusion convolutional recur-
rent neural network: data-driven traffic forecasting”. In: Arxiv preprint
arxiv:1707.01926.

Li, Z., K. Meidani, P. Yadav, and A. B. Farimani (2021). “Graph neural net-
works accelerated molecular dynamics”. In: Arxiv preprint arxiv:2112.03383.

Lillicrap, T. P. and A. Santoro (2019). “Backpropagation through time and
the brain”. In: Curr. opin. neurobiol. 55, 82.

Lin, J.-L. and C. W. Granger (1994). “Forecasting from non-linear models in
pract.” In: Journal of forecasting 13.1, 1.

Lin, Y. and L. Peng (2011). “Combined model based on emd-svm for short-
term wind power prediction”. In: Proceedings of the csee 31.31, 102.

Linnainmaa, S. (1976). “Taylor expansion of the accumulated rounding
error”. In: Bit numerical mathematics 16.2, 146.

Linot, A. J. and M. D. Graham (2020). “Deep learning to discover and
predict dynamics on an inertial manifold”. In: Phys. rev. e 101.6, 062209.

Lorenz, E. (1995). “Predictability: a problem partly solved”. In: Seminar on
predictability, 4-8 september 1995. Vol. 1. Ecmwf. Shinfield Park, Reading:
Ecmwf, 1.

Lorenz, E. N. (1969). “Atmospheric predictability as revealed by naturally
occurring analogues”. In: J. atmos. sci.s 26.4, 636.

Lu, Z., B. R. Hunt, and E. Ott (2018). “Attractor reconstruction by machine
learning”. In: Chaos: an interdisciplinary j nonlinear sci 28.6, 061104.

Lukoševičius, M. (2012). “A practical guide to applying echo state net-
works”. In: Neural networks: tricks of the trade.

Lukoševičius, M. and H. Jaeger (2009). “Reservoir computing approaches
to recurrent neural network training”. In: Computer science review 3.3, 127.

Lusch, B., J. N. Kutz, and S. L. Brunton (2018). “Deep learning for universal
linear embeddings of nonlinear dyn.” In: Nat. commun. 9.1, 1.

Maass, W., T. Natschläger, and H. Markram (2002). “Real-time computing
without stable states: a new framework for neural comput. based on
perturbations”. In: Neural comput. 14.11, 2531.

bibliography 243

Mahadevan, A. (2016). “The impact of submesoscale physics on primary
productivity of plankton”. In: Annual review of marine science 8, 161.

Majda, A., R. V. Abramov, and M. J. Grote (2005). Information theory and
stochastics for multiscale nonlinear systems. Vol. 25. American Mathematical
Soc.

Majda, A. J. and J. Harlim (2012). Filtering complex turbulent systems. Cam-
bridge University Press.

Majda, A. J. and Y. Lee (2014). “Conceptual dynamical models for turbu-
lence”. In: Proc. natl. acad. sci. u.s.a. 111.18, 6548.

Makarenko, A. V. (2018). “Deep convolutional neural networks for chaos
identification in signal process.” In: 2018 26th european signal process.
conference (eusipco). Ieee, 1467.

Mandralis, I., P. Weber, G. Novati, and P. Koumoutsakos (2021). “Learning
swimming escape patterns for larval fish under energy constraints”. In:
Phys. rev. fluids 6.9, 093101.

Manneville, P. (1984). “Macroscopic modelling of turbulent flows, proceed-
ings of a workshop held at inria, sophia-antipolis, france, 1984”. In: Lect.
notes phys. 230, 319.

Mannion, P., J. Duggan, and E. Howley (2016). “An experimental review of
reinforcement learning algorithms for adaptive traffic signal control”. In:
Autonomic road transport support systems, 47.

Maragliano, L., A. Fischer, E. Vanden-Eijnden, and G. Ciccotti (2006). “String
method in collective variables: minimum free energy paths and isocom-
mittor surfaces”. In: J. chem. phys. 125, 024106.

Mardt, A., L. Pasquali, H. Wu, and F. Noé (2018). “Vampnets for deep
learning of molecular kinetics”. In: Nat. commun. 9.1, 1.

Marques, C., J. Ferreira, A. Rocha, J. Castanheira, P. Melo-Gonçalves, N.
Vaz, and J. Dias (2006). “Singular spectrum analysis and forecasting of
hydrological time series”. In: Phys. chem. earth., parts a/b/c 31.18, 1172.

Mathieu, M., C. Couprie, and Y. LeCun (2015). “Deep multi-scale video
prediction beyond mean square error”. In: Arxiv preprint arxiv:1511.05440.

Maulik, R., B. Lusch, and P. Balaprakash (2021). “Reduced-order modeling
of advection-dominated systems with recurrent neural networks and
convolutional autoencoders”. In: Phys. fluids 33.3, 037106.

Maus, A. and J. C. Sprott (2013). “Evaluating lyapunov exponent spectra
with neural networks”. In: Chaos, solitons and fractals 51, 13.

McCarty, J. and M. Parrinello (2017). “A variational conformational dynam-
ics approach to the selection of collective variables in metadynamics”. In:
J. chem. phys. 147.20, 204109.

244 bibliography

Michie, D. (1968). ““memo” functions and machine learning”. In: Nature
218.5136, 19.

Milano, M. and P. Koumoutsakos (2002). “Neural network modeling for
near wall turbulent flow”. In: J. comput. phys. 182.1, 1.

Miller, J. and M. Hardt (2018). “When recurrent models don’t need to be
recurrent”. In: Arxiv preprint arxiv:1805.10369 4.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015).
“Human-level control through deep reinforcement learning”. In: Nature
518.7540, 529.

Mo, K. C. and R. E. Livezey (1986). “Tropical-extratropical geopotential
height teleconnections during the northern hemisphere winter”. In: Mon.
weather rev. 114.12, 2488.

Monthly values of the Darwin Sea Level Pressure series, 1882-1998 (n.d.). http:
//research.jisao.washington.edu/data_sets/darwin.

Müller, K. and L. D. Brown (1979). “Location of saddle points and minimum
energy paths by a constrained simplex optimization procedure”. In: Theor.
chim. acta 53.1, 75.

Nagumo, J., S. Arimoto, and S. Yoshizawa (1962). “An active pulse trans-
mission line simulating nerve axon”. In: Proc. ire 50.10, 2061.

Neofotistos, G., M. Mattheakis, G. D. Barmparis, J. Hizanidis, G. P. Tsironis,
and E. Kaxiras (2019). “Machine learning with observers predicts complex
spatiotemporal behavior”. In: Front. phys. 7, 24.

Neumann, M. (1985). “The dielectric constant of water. computer simula-
tions with the mcy potential”. In: J. chem. phys. 82, 5663.

Noé, F., A. Tkatchenko, K.-R. Müller, and C. Clementi (2020). “Machine
learning for mol. simul.” In: Annu. rev. phys. chem. 71, 361.

Noé, F., S. Doose, I. Daidone, M. Löllmann, M. Sauer, J. D. Chodera, and
J. C. Smith (2011). “Dynamical fingerprints for probing individual relax-
ation processes in biomolecular dynamics with simulations and kinetic
experiments”. In: Pnas 108.12, 4822.

Noé, F., S. Olsson, J. Köhler, and H. Wu (2019). “Boltzmann generators:
sampling equilibrium states of many-body systems with deep learning”.
In: Science 365.6457, eaaw1147.

Noid, W. G. (2013). “Perspective: coarse-grained models for biomolecular
systems”. In: J. chem. phys. 139, 09b201_1.

Norouzi, M., S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D. Schuurmans, et al.
(2016). “Reward augmented maximum likelihood for neural structured
prediction”. In: Advances in neural information processing systems, 1723.

http://research.jisao.washington.edu/data_sets/darwin
http://research.jisao.washington.edu/data_sets/darwin

bibliography 245

Novati, G., H. L. de Laroussilhe, and P. Koumoutsakos (2021). “Automating
turbulence modelling by multi-agent reinforcement learning”. In: Nat.
mach. intell. 3.1, 87.

Novati, G. and P. Koumoutsakos (2019). “Remember and forget for ex-
perience replay”. In: International conference on machine learning. PMLR,
4851.

Novati, G., L. Mahadevan, and P. Koumoutsakos (2019). “Controlled gliding
and perching through deep-reinforcement-learning”. In: Phys. rev. fluids
4.9, 093902.

Nuske, F., B. G. Keller, G. Pérez-Hernández, A. S. Mey, and F. Noé (2014).
“Variational approach to molecular kinetics”. In: J. chem. theory comput.
10.4, 1739.

Oh, J., X. Guo, H. Lee, R. L. Lewis, and S. Singh (2015). “Action-conditional
video prediction using deep networks in atari games”. In: Adv. neural inf.
process. syst. 28, 2863.

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu (2016). “Wavenet: a
generative model for raw audio”. In: Arxiv preprint arxiv:1609.03499.

Oord, A. v. d., N. Kalchbrenner, and K. Kavukcuoglu (2016). “Pixel recurrent
neural networks”. In: Arxiv preprint arxiv:1601.06759.

Ott, E. (2002). Chaos in dynamical systems. 2nd ed. Cambridge University
Press.

Parker, D. B. (1985). “Learnins logic.” In: Technical report.
Parlitz, U. and C. Merkwirth (2000). “Prediction of spatiotemporal time

series based on reconstructed local states”. In: Phys. rev. lett. 84 (9), 1890.
Partal, T. and H. K. Cigizoglu (2009). “Prediction of daily precipitation

using wavelet—neural networks”. In: Hydrol. sci. j. 54.2, 234.
Pascanu, R., T. Mikolov, and Y. Bengio (2013). “On the difficulty of training

recurrent neural networks”. In: Proceedings of the 30th international con-
ference on international conference on machine learning - volume 28. Icml’13.
Atlanta, GA, USA: JMLR.org, Iii-1310.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. (2019). “Pytorch: an imperative
style, high-performance deep learning library”. In: Adv. neural inf. process.
syst. 8026.

Pathak, J., B. Hunt, M. Girvan, Z. Lu, and E. Ott (2018). “Model-free pre-
diction of large spatiotemporally chaotic systems from data: a reservoir
computing approach”. In: Phys. rev. lett. 120.2 (2), 024102.

246 bibliography

Pathak, J., Z. Lu, B. R. Hunt, M. Girvan, and E. Ott (2017). “Using machine
learning to replicate chaotic attractors and calculate lyapunov exponents
from data”. In: Chaos: an interdisciplinary j nonlinear sci 27.12, 121102.

Pathak, J., A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E.
Ott (2018). “Hybrid forecasting of chaotic processes: using machine learn-
ing in conjunction with a knowledge-based model”. In: Chaos: an interdis-
ciplinary j nonlinear sci 28.4. Exported from https://app.dimensions.ai on
2019/02/13, 041101.

Pennington, J., R. Socher, and C. Manning (2014). “Glove: global vectors
for word representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (emnlp), 1532.

Pérez-Hernández, G. and F. Noé (2016). “Hierarchical time-lagged inde-
pendent component analysis: computing slow modes and reaction co-
ordinates for large molecular systems”. In: J. chem. theory comput. 12,
6118.

Peters, B. and B. L. Trout (2006). “Obtaining reaction coordinates by likeli-
hood maximization”. In: J. chem. phys. 125, 054108.

Petter Langtangen, H. and A. Logg (2017). Solving pdes in python: the fenics
tutorial i.

Pezeshkian, W., M. König, T. A. Wassenaar, and S. J. Marrink (2020).
“Backmapping triangulated surfaces to coarse-grained membrane mod-
els”. In: Nat. commun. 11, 1.

Praprotnik, M. and D. Janežič (2005). “Molecular dynamics integration
meets standard theory of molecular vibrations”. In: J. chem. inf. model. 45,
1571.

Praprotnik, M., L. D. Site, and K. Kremer (2008). “Multiscale simulation
of soft matter: from scale bridging to adaptive resolution”. In: Annu. rev.
phys. chem. 59, 545.

Preto, J. and C. Clementi (2014). “Fast recovery of free energy landscapes
via diffusion-map-directed molecular dynamics”. In: Phys. chem. chem.
phys. 16.36, 19181.

Quade, M., M. Abel, K. Shafi, R. K. Niven, and B. R. Noack (2016). “Predic-
tion of dynamical systems by symbolic regression”. In: Phys. rev. e 94.1,
012214.

Rackovsky, S. and H. A. Scheraga (2020). “The structure of protein dynamic
space”. In: Proc. natl. acad. sci. u.s.a. 117.33, 19938.

Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019). “Physics-informed
neural networks: a deep learning framework for solving forward and

bibliography 247

inverse prob. involving nonlinear partial differential equations”. In: J.
comput. phys. 378, 686.

Ramachandran, G. N. (1963). “Stereochemistry of polypeptide chain config-
urations”. In: J. mol. biol. 7, 95.

Ranzato, M., S. Chopra, M. Auli, and W. Zaremba (2015). “Sequence
level training with recurrent neural networks”. In: Arxiv preprint
arxiv:1511.06732.

Rasmussen, C. E. (2003). “Gaussian processes in machine learning”. In:
Summer school on machine learning. Springer, 63.

Rasp, S., P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey
(2020). “Weatherbench: a benchmark dataset for data-driven weather
forecasting”. In: Arxiv preprint arxiv:2002.00469.

Rasthofer, U., F. Wermelinger, P. Hadijdoukas, and P. Koumoutsakos (2017).
“Large scale simulation of cloud cavitation collapse”. In: Procedia comput.
sci. 108, 1763.

Ribeiro, J. M. L., P. Bravo, Y. Wang, and P. Tiwary (2018). “Reweighted
autoencoded variational Bayes for enhanced sampling (rave)”. In: J. chem.
phys. 149, 072301.

Rico-Martinez, R., K. Krischer, I. Kevrekidis, M. Kube, and J. Hudson
(1992). “Discrete-vs. continuous-time nonlinear signal process. of cu
electrodissolution data”. In: Chem. eng. commun. 118.1, 25.

Robinson, J. C. (1994). “Inertial manifolds for the kuramoto-sivashinsky
equation”. In: Phys. lett. a 184.2, 190.

Robinson, P. A., C. J. Rennie, D. L. Rowe, S. C. O’Connor, and E. Gordon
(2005). “Multiscale brain modelling”. In: Philos. trans. r. soc. lond., b, biol.
sci. 360.1457, 1043.

Rohrdanz, M. A., W. Zheng, M. Maggioni, and C. Clementi (2011). “Deter-
mination of reaction coordinates via locally scaled diffusion map”. In: J.
chem. phys. 134.12, 124116.

Rossinelli, D., B. Hejazialhosseini, W. van Rees, M. Gazzola, M. Bergdorf,
and P. Koumoutsakos (2015). “Mrag-i2d: multi-resolution adapted grids
for remeshed vortex methods on multicore architectures”. In: J. comput.
phys. 288, 1.

Rowe, P., V. L. Deringer, P. Gasparotto, G. Csányi, and A. Michaelides (2020).
“An accurate and transferable machine learning potential for carbon”. In:
The j. chem. phys. 153.3, 034702.

Rowley, C. W. (2005). “Model reduction for fluids, using balanced proper
orthogonal decomposition”. In: Internatl. j. (wash.) of bifurcation and chaos
15.03, 997.

248 bibliography

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning repre-
sentations by back-propagating errors”. In: Nature 323.6088, 533.

Rupp, M., A. Tkatchenko, K.-R. Müller, and O. A. V. Lilienfeld (2012). “Fast
and accurate modeling of molecular atomization energies with machine
learning”. In: Phys. rev. lett. 108, 058301.

Sainath, T. N., O. Vinyals, A. Senior, and H. Sak (2015). “Convolutional,
long short-term memory, fully connected deep neural networks”. In: 2015
ieee international conference on acoustics, speech and signal process. (icassp).
Ieee, 4580.

Sangiorgio, M. and F. Dercole (2020). “Robustness of lstm neural networks
for multi-step forecasting of chaotic time series”. In: Chaos, solitons &
fractals 139, 110045.

Sano, M. and Y. Sawada (1985). “Measurement of lyapunov spectrum from
a chaotic time series”. In: Phys. rev. lett. 55, 1082.

Sapsis, T. P. and A. J. Majda (2013). “Statistically accurate low-order models
for uncertainty quantification in turbulent dynamical systems”. In: Proc.
natl. acad. sci. u.s.a. 110.34, 13705.

Sauer, T., J. A. Yorke, and M. Casdagli (1991). “Embedology”. In: J. stat. phys.
65.3, 579.

Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini
(2008). “The graph neural network model”. In: Ieee transactions on neural
networks 20.1, 61.

Schaeffer, H. (2017). “Learning partial differential equations via data dis-
covery and sparse optimization”. In: Proc. math. phys. eng. sci. 473.2197,
20160446.

Schäfer, A. M. and H. G. Zimmermann (2006). “Recurrent neural networks
are universal approximators”. In: Proceedings of the 16th international confer-
ence on artificial neural networks - volume part i. Icann’06. Berlin, Heidelberg:
Springer-Verlag, 632.

Scherer, M. K., B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M.
Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz, and F. Noé (2015).
“Pyemma 2: a software package for estimation, validation, and analysis
of markov models”. In: J. chem. theory comput. 11.11, 5525.

Schluse, M., M. Priggemeyer, L. Atorf, and J. Rossmann (2018). “Exper-
imentable digital twins—streamlining simulation-based systems engi-
neering for industry 4.0”. In: Ieee transactions on industrial informatics 14.4,
1722.

bibliography 249

Schmidhuber, J., D. Wierstra, and F. J. Gomez (2005). “Evolino: hybrid
neuroevolution/optimal linear search for sequence prediction”. In: Pro-
ceedings of the 19th international joint conferenceon artif. intell. (ijcai).

Schmidt, F. (2019). “Generalization in generation: a closer look at exposure
bias”. In: Arxiv preprint arxiv:1910.00292.

Schmitt, U. W. and G. A. Voth (1999). “The computer simulation of proton
transport in water”. In: J. chem. phys. 111, 9361.

Schütt, K. T., H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R.
Müller (2018). “Schnet–a deep learning architecture for molecules and
materials”. In: J. chem. phys. 148, 241722.

Schütt, K. T., S. Chmiela, O. A. von Lilienfeld, A. Tkatchenko, K. Tsuda, and
K.-R. Müller, eds. (2020). Machine learning meets quantum physics. Springer,
Cham.

Schütte, C., F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden (2011). “Markov
state models based on milestoning”. In: J. chem. phys. 134.20, 204105.

Selten, F. M. (1995). “An efficient description of the dynamics of barotropic
flow”. In: J. atmos. sci. 52.7, 915.

Sergeev, A. and M. Del Balso (2018). “Horovod: fast and easy distributed
deep learning in tensorflow”. In: Arxiv preprint arxiv:1802.05799.

Shaw, D., R. Dror, J. Salmon, J. Grossman, K. Mackenzie, J. Bank, C. Young,
M. Deneroff, B. Batson, K. Bowers, et al. (2009). “Proceedings of the
conference on high performance computing networking, storage and
analysis”. In: Association for Computing Machinery Portland, Oregon.

Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo (2015).
“Convolutional lstm network: a machine learning approach for precipita-
tion nowcasting”. In: Adv. neural inf. process. syst. 28, 802.

Shi, X., Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
Woo (2017). “Deep learning for precipitation nowcasting: a benchmark
and a new model”. In: Adv. neural inf. process. syst. 5617.

Shi, X. and D.-Y. Yeung (2018). “Machine learning for spatiotemporal se-
quence forecasting: a survey”. In: Arxiv preprint arxiv:1808.06865.

Shirts, M. and V. S. Pande (2000). “Screen savers of the world unite!” In:
Science 290.5498, 1903.

Shlens, J. (2014). “A tutorial on principal component analysis”. In: Arxiv
preprint arxiv:1404.1100.

Sidky, H., W. Chen, and A. L. Ferguson (2020). “Molecular latent space
simulators”. In: Chem. sci. 11, 9459.

Siegelmann, H. and E. Sontag (1995). “On the computational power of
neural nets”. In: J. comput. syst. sci. 50.1, 132.

250 bibliography

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
(2016). “Mastering the game of go with deep neural networks and tree
search”. In: Nature 529.7587, 484.

Sivashinsky, G. I. (1977). “Nonlinear analysis of hydrodynamic instability in
laminar flames–i. derivation of basic equations”. In: Acta astronaut. 4.11,
1177.

Sivashinsky, G. I. and D. Michelson (1980). “On irregular wavy flow of a
liquid film down a vertical plane”. In: Progress of theoretical physics 63.6,
2112.

Skjaerven, L., A. Martinez, and N. Reuter (2011). “Principal component and
normal mode analysis of proteins; a quantitative comparison using the
groel subunit”. In: Proteins 79.1, 232.

Springel, V., S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J.
Navarro, R. Thacker, D. Croton, J. Helly, et al. (2005). “Simulations of the
formation, evolution and clustering of galaxies and quasars”. In: Nature
435.7042, 629.

Srivastava, N., E. Mansimov, and R. Salakhudinov (2015). “Unsupervised
learning of video representations using lstms”. In: International conference
on machine learning, 843.

Stamati, H., C. Clementi, and L. E. Kavraki (2010). “Application of nonlinear
dimensionality reduction to characterize the conformational landscape of
small peptides”. In: Proteins 78.2, 223.

Stieffenhofer, M., M. Wand, and T. Bereau (2020). “Adversarial reverse map-
ping of equilibrated condensed-phase molecular structures”. In: Mach.
learn.: sci. technol. 1.4, 045014.

Su, J., W. Byeon, F. Huang, J. Kautz, and A. Anandkumar (2020). “Convolu-
tional tensor-train lstm for spatio-temporal learning”. In: Arxiv preprint
arxiv:2002.09131.

Sultan, M. M., H. K. Wayment-Steele, and V. S. Pande (2018). “Transferable
neural networks for enhanced sampling of protein dynamics”. In: J. chem.
theory comput. 14.4, 1887.

Sutskever, I. (2013). Training recurrent neural networks. University of Toronto
Toronto, Canada.

Taira, K., M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri,
S. T. Dawson, and C.-A. Yeh (2020). “Modal analysis of fluid flows:
applications and outlook”. In: Aiaa journal 58.3, 998.

bibliography 251

Takens, F. (1981). “Detecting strange attractors in turbulence”. In: Dynamical
systems and turbulence, warwick 1980. Ed. by D. Rand and L.-S. Young.
Berlin, Heidelberg: Springer Berlin Heidelberg, 366.

Tao, F. and Q. Qi (2019). Make more digital twins.
Tao, M., H. Owhadi, and J. E. Marsden (2010). “Nonintrusive and structure

preserving multiscale integration of stiff odes, sdes, and hamiltonian
systems with hidden slow dynamics via flow averaging”. In: Multiscale
modeling & simulation 8.4, 1269.

Thompson, D. W. and J. M. Wallace (2000). “Annular modes in the extrat-
ropical circulation. part i: month-to-month variability”. In: J. climate 13.5,
1000.

Tikhonov, A. N. and V. Y. Arsenin (1977). Solutions of ill-posed problems.
W.H. Winston.

Tomczak, J. and M. Welling (2018). “Vae with a vampprior”. In: Aistats.
Pmlr, 1214.

Trendelkamp-Schroer, B. and F. Noé (2016). “Efficient estimation of rare-
event kinetics”. In: Phys. rev. x 6.1, 011009.

Tsai, S.-T., E.-J. Kuo, and P. Tiwary (2020). “Learning molecular dynamics
with simple language model built upon long short-term memory neural
network”. In: Nat. commun. 11.1, 1.

Tu, J. H. (2013). “Dynamic mode decomposition: theory and applications”.
PhD thesis. Princeton University.

Van Erp, T. S., D. Moroni, and P. G. Bolhuis (2003). “A novel path sampling
method for the calculation of rate constants”. In: The j. chem. phys. 118.17,
7762.

Van Rossum, G. and F. L. Drake Jr (1995). Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands.

Vanden-Eijnden, E. and M. Venturoli (2009). “Markovian milestoning with
voronoi tessellations”. In: J. chem. phys. 130.19, 194101.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin (2017). “Attention is all you need”. In: Adv.
neural inf. process. syst. 5998.

Vlachas, P. R., G. Arampatzis, C. Uhler, and P. Koumoutsakos (2022). “Mul-
tiscale simulations of complex systems by learning their effective dynam-
ics”. In: Nat. mach. intell. 4.4, 359.

Vlachas, P. R., W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos (2018).
“Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks”. In: Proc. math. phys. eng. sci. 474.2213,
20170844.

252 bibliography

Vlachas, P. R. and P. Koumoutsakos (in preparation). “Scheduled autoregres-
sive backpropagation through time for robust long-term spatiotemporal
forecasting”. In: Tbd.

Vlachas, P. R., J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and
P. Koumoutsakos (2020). “Backpropagation algorithms and reservoir
computing in recurrent neural networks for the forecasting of complex
spatiotemporal dynamics”. In: Neural networks 126, 191.

Vlachas, P. R., J. Zavadlav, M. Praprotnik, and P. Koumoutsakos (2021). “Ac-
celerated simulations of molecular systems through learning of effective
dynamics”. In: J. chem. theory comput.

Voelker, A., I. Kajić, and C. Eliasmith (2019). “Legendre memory units:
continuous-time representation in recurrent neural networks”. In: Ad-
vances in neural information processing systems, 15570.

Voudouris, C. (1998). “Guided local search—an illustrative example in
function optimisation”. In: Bt technol. j. 16, 46.

Wagner, J. W., J. F. Dama, A. E. Durumeric, and G. A. Voth (2016). “On
the representability problem and the physical meaning of coarse-grained
models”. In: The j. chem. phys. 145.4, 044108.

Walker, D. W. and J. J. Dongarra (1996). “Mpi: a standard message passing
interface”. In: Supercomputer 12, 56.

Walker, J., A. Gupta, and M. Hebert (2014). “Patch to the future: unsuper-
vised visual prediction”. In: Proceedings of the ieee conference on computer
vision and pattern recognit. 3302.

Wan, Z. Y. and T. P. Sapsis (2017). “Reduced-space gaussian process regres-
sion for data-driven probabilistic forecast of chaotic dynamical systems”.
In: Physica d 345, 40.

Wan, Z. Y. and T. P. Sapsis (2018). “Machine learning the kinematics of
spherical particles in fluid flows”. In: J. fluid mech. 857.

Wan, Z. Y., P. Vlachas, P. Koumoutsakos, and T. Sapsis (2018). “Data-assisted
reduced-order modeling of extreme events in complex dynamical sys-
tems”. In: Plos one 13.5, e0197704.

Wang, D. and P. Tiwary (2021). “State predictive information bottleneck”.
In: J. chem. phys. 154.13, 134111.

Wang, H., C. Schütte, G. Ciccotti, and L. D. Site (2014). “Exploring the
conformational dynamics of alanine dipeptide in solution subjected to an
external electric field: a nonequilibrium molecular dynamics simulation”.
In: J. chem. theory comput. 10, 1376.

bibliography 253

Wang, J., S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. De Fabritiis,
F. Noé, and C. Clementi (2019). “Machine learning of coarse-grained
molecular dynamics force fields”. In: Acs cent. sci. 5.5, 755.

Wang, Y., J. M. L. Ribeiro, and P. Tiwary (2019). “Past–future information
bottleneck for sampling molecular reaction coordinate simultaneously
with thermodynamics and kinetics”. In: Nat. commun. 10.1, 1.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). “Image
quality assessment: from error visibility to structural similarity”. In: Ieee
transactions on image processing 13.4, 600.

Warrach-Sagi, K., T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer (2013).
“Evaluation of a climate simulation in europe based on the wrf–noah
model system: precipitation in germany”. In: Climate dyn. 41.3-4, 755.

Wehmeyer, C. and F. Noé (2018). “Time-lagged autoencoders: deep learning
of slow collective variables for molecular kinetics”. In: The j. chem. phys.
148.24, 241703.

Weinan, E., B. Engquist, et al. (2003). “The heterognous multiscale methods”.
In: Commun math sci 1.1, 87.

Weinan, E., B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden (2007).
“Heterogeneous multiscale methods: a review”. In: Comm. comput. phys.
2.3, 367.

Weinan, E., X. Li, and E. Vanden-Eijnden (2004). “Some recent progress
in multiscale modeling”. In: Multiscale modelling and simulation. Ed. by
S. Attinger and P. Koumoutsakos. Berlin, Heidelberg: Springer Berlin
Heidelberg, 3.

Werbos, P. (1974). “Beyond regression:" new tools for prediction and analysis
in the behav. sci.s”. In: Ph. d. dissertation, harvard university.

Werbos, P. J. (1988). “Generalization of backpropagation with application to
a recurrent gas market model”. In: Neural networks 1.4, 339.

Werbos, P. J. (1990). “Backpropagation through time: what it does and how
to do it”. In: Proceedings of the ieee 78.10, 1550.

Werder, T., J. H. Walther, and P. Koumoutsakos (2005). “Hybrid atomistic–
continuum method for the simulation of dense fluid flows”. In: J. comput.
phys. 205, 373.

Wiewel, S., M. Becher, and N. Thuerey (2019). “Latent space physics: to-
wards learning the temporal evolution of fluid flow”. In: Comput. graphics
forum. Vol. 38. 2. Wiley Online Library, 71.

Williams, C. K. and C. E. Rasmussen (2006). Gaussian processes for machine
learning. Vol. 2. 3. MIT press Cambridge, MA.

254 bibliography

Williams, M. O., I. G. Kevrekidis, and C. W. Rowley (2015). “A data–driven
approximation of the koopman operator: extending dynamic mode de-
composition”. In: J nonlinear sci 25.6, 1307.

Winter, R., F. Noé, and D.-A. Clevert (2021). “Auto-encoding molecular
conformations”. In: Arxiv preprint arxiv:2101.01618.

Wolf, A., J. B. Swift, H. Swinney, and J. A. Vastano (1985). “Determining
lyapunov exponents from a time series”. In: Physica d 16, 285.

Wu, H., A. Mardt, L. Pasquali, and F. Noé (2018). “Deep generative markov
state models”. In: Neurips, 3975.

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. (2016). “Google’s neural machine trans-
lation system: bridging the gap between human and machine translation”.
In: Arxiv preprint arxiv:1609.08144.

Xavier, P. K. and B. N. Goswami (2007). “An analog method for real-time
forecasting of summer monsoon subseasonal variability”. In: Mon. weather
rev. 135.12, 4149.

Yan, X. and X. G. Su (2009). Linear regression analysis. World Scientific.
Zavadlav, J., G. Arampatzis, and P. Koumoutsakos (2019). “Bayesian selec-

tion for coarse-grained models of liquid water”. In: Sci. rep. 9, 1.
Zdravkovich, M. (1997). “Flow around circular cylinders; vol. i fundamen-

tals”. In: J. fluid mech. 350.1, 377.
Zhang, L., J. Han, H. Wang, R. Car, and W. E (2018). “Deepcg: constructing

coarse-grained models via deep neural networks”. In: J. chem. phys. 149.3,
034101.

Zhang, Z., D. Zhang, and R. C. Qiu (2019). “Deep reinforcement learning
for power system applications: an overview”. In: Csee journal of power and
energy syst. 6.1, 213.

Zhao, Z. and D. Giannakis (2016). “Analog forecasting with dynamics-
adapted kernels”. In: Nonlinearity 29.9, 2888.

Zheng, W., M. A. Rohrdanz, and C. Clementi (2013). “Rapid exploration of
configuration space with diffusion-map-directed molecular dynamics”.
In: J. phys. chem. b 117.42, 12769.

P U B L I C AT I O N S

Vlachas, P. R., W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos (2018).
“Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks”. In: Proc. math. phys. eng. sci. 474.2213,
20170844.

Wan, Z. Y., P. Vlachas, P. Koumoutsakos, and T. Sapsis (2018). “Data-assisted
reduced-order modeling of extreme events in complex dynamical sys-
tems”. In: Plos one 13.5, e0197704.

Vlachas, P. R., J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and
P. Koumoutsakos (2020). “Backpropagation algorithms and reservoir
computing in recurrent neural networks for the forecasting of complex
spatiotemporal dynamics”. In: Neural networks 126, 191.

Vlachas, P. R., J. Zavadlav, M. Praprotnik, and P. Koumoutsakos (2021). “Ac-
celerated simulations of molecular systems through learning of effective
dynamics”. In: J. chem. theory comput.

Vlachas, P. R., G. Arampatzis, C. Uhler, and P. Koumoutsakos (2022). “Mul-
tiscale simulations of complex systems by learning their effective dynam-
ics”. In: Nat. mach. intell. 4.4, 359.

Vlachas, P. R. and P. Koumoutsakos (in preparation). “Scheduled autoregres-
sive backpropagation through time for robust long-term spatiotemporal
forecasting”. In: Tbd.

255

C U R R I C U L U M V I TA E

personal data

Name Pantelis R. Vlachas

Date of Birth 28.10.1993

Place of Birth Ioannina, Greece

Citizen of Greece

education

October, 2014 –
August, 2016

M.Sc. in Electrical Engineering & Information Tech-
nology
Technical University of Munich
Munich, Germany

October, 2011 –
July, 2014

B.Sc. in Electrical Engineering & Information Tech-
nology
Technical University of Munich
Munich, Germany

academic experience

May, 2021 –
ongoing

Associate Researcher in Applied Mathematics
Harvard John A. Paulson School of Engineering and
Applied Sciences,
USA

257

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Multiscale Systems
	1.2 Molecular Systems
	1.3 Chaotic Systems
	1.4 Machine Learning
	1.5 Contributions

	2 Preliminaries
	2.1 Neural Architectures
	2.1.1 Autoencoders
	2.1.2 Variational Autoencoders
	2.1.3 Convolutional Neural Networks
	2.1.4 Recurrent Neural Networks
	2.1.5 Mixture Density Networks

	2.2 Dynamical Systems
	2.2.1 The Kuramoto-Sivashinsky Equation
	2.2.2 The Lorenz 96 Model

	3 Coupling an RNN with a Mean Stochastic Model
	3.1 Related Work
	3.2 Methods
	3.2.1 Training the LSTM-RNN
	3.2.2 Mean Stochastic Model

	3.3 Benchmark and Performance Measures
	3.4 Results
	3.4.1 The Lorenz 96 Model
	3.4.2 Kuramoto-Sivashinsky Equation
	3.4.3 A Barotropic Climate Model

	3.5 Sensitivity to Noise
	3.5.1 Lorenz 96 Model
	3.5.2 Kuramoto-Sivashinsky Equation
	3.5.3 Barotropic Model

	3.6 Computational Cost of Prediction
	3.7 Discussion

	4 RNNs for Dynamical Systems
	4.1 Related Work
	4.2 Methods
	4.2.1 Gated Recurrent Unit
	4.2.2 Unitary Evolution
	4.2.3 Backpropagation Through Time
	4.2.4 Reservoir Computing

	4.3 Comparison Metrics
	4.4 Reduced-Order Observable Dynamics in Lorenz 96
	4.4.1 Dimensionality Reduction
	4.4.2 Results on the Lorenz 96 Model

	4.5 Parallel Forecasting Leveraging Local Interactions
	4.5.1 Parallel Architecture
	4.5.2 Results on the Lorenz 96 Model
	4.5.3 The Kuramoto-Sivashinsky Equation
	4.5.4 Results on the KS Equation

	4.6 Lyapunov Spectrum Calculation in KS
	4.7 Discussion

	5 Scheduled Autoregressive BPTT
	5.1 Related Work
	5.2 Methods
	5.2.1 Truncated Backpropagation Through Time
	5.2.2 Autoregressive Backpropagation Through Time

	5.3 Results
	5.3.1 The Mackey-Glass Equation
	5.3.2 Viscous Flow Past a Cylinder in a Channel

	5.4 Discussion

	6 Learning Effective Dynamics
	6.1 Related Work
	6.2 Methods
	6.3 Comparison Measures
	6.3.1 Mean Normalised Absolute Difference
	6.3.2 Pearson Correlation Coefficient

	6.4 Results
	6.4.1 FitzHugh-Nagumo Model
	6.4.2 The Kuramoto-Sivashinsky Equation
	6.4.3 Viscous Flow Past a Cylinder

	6.5 Discussion

	7 LED for Molecular Systems
	7.1 Related Work
	7.2 Methods
	7.2.1 Mixture Density Network Autoencoder
	7.2.2 LSTM
	7.2.3 Mixture Density LSTM Network
	7.2.4 LED for Molecular Systems

	7.3 Results
	7.3.1 Müller-Brown Potential
	7.3.2 Trp Cage
	7.3.3 Alanine Dipeptide

	7.4 Discussion

	8 Conclusion and Outlook
	8.1 Conclusions
	8.2 Outlook

	A Coupling an RNN with a Mean Stochastic Model
	A.1 Methods
	A.1.1 Training and Inference
	A.1.2 Weighting the Loss Function
	A.1.3 LSTM Architecture

	A.2 Barotropic model

	B Recurrent Neural Networks
	B.1 Memory Efficient Implementation of RC Training
	B.2 Regularizing Training with Noise
	B.3 Dimensionality Reduction with Singular Value Decomposition
	B.4 Hyperparameters
	B.5 Divergence of Unitary and RC RNNs in Lorenz 96
	B.6 Results on Lorenz 96 for F=10
	B.7 Temporal Dependencies and Backpropagation

	C Scheduled Autoregressive BPTT
	C.1 Scheduled Autoregressive Backpropagation Through Time
	C.1.1 eq:vlachas2022:zbptt
	C.1.2 eq:vlachas2022:zabptt

	C.2 Darwin Sea Level Temperatures
	C.3 Mackey-Glass Equation
	C.4 Viscous Flow Past a Cylinder in a Channel
	C.4.1 Data Generation
	C.4.2 Hyperparameters

	D Learning Effective Dynamics
	D.1 FitzHugh-Nagumo Model
	D.2 The Kuramoto-Sivashinsky Equation
	D.3 Viscous Flow Past a Cylinder

	E LED for Molecular Systems
	E.1 Müller-Brown Potential
	E.1.1 Definition of Metastable States
	E.1.2 LED Hyperparameters
	E.1.3 Timescales in the LED Latent Space

	E.2 Trp Cage
	E.2.1 LED Hyperparameters
	E.2.2 Marginal State Distributions

	E.3 Alanine Dipeptide
	E.3.1 Metastable State Definition
	E.3.2 LED Hyperparameters
	E.3.3 Marginal State Distributions
	E.3.4 Latent Metastable States

	 Bibliography
	Publications
	Curriculum Vitae

