
Available online at www.sciencedirect.com

t
t
h
c
a
r
t
d
t
b
d
v
r
m
a
©

K
N

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 415 (2023) 116204
www.elsevier.com/locate/cma

Adaptive learning of effective dynamics for online modeling of
complex systems

Ivica Kičića, Pantelis R. Vlachasa,b, Georgios Arampatzisa,b, Michail Chatzimanolakisa,b,
Leonidas Guibasc, Petros Koumoutsakosb,∗

a Computational Science and Engineering Laboratory, ETH Zürich, CH-8092, Switzerland
b School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA

c Department of Computer Science, Stanford University, 353 Serra Hall, CA 94035, USA

Received 4 April 2023; received in revised form 9 June 2023; accepted 21 June 2023
Available online 31 July 2023

Dataset link: https://github.com/cselab/adaled

Abstract

Predictive simulations are essential for applications ranging from weather forecasting to material design. The veracity of
hese simulations hinges on their capacity to capture the effective system dynamics. Massively parallel simulations predict
he systems dynamics by resolving all spatiotemporal scales, often at a cost that prevents experimentation. On the other
and, reduced order models are fast but often limited by the linearization of the system dynamics and the adopted heuristic
losures. We propose a novel systematic framework that bridges large scale simulations and reduced order models to extract
nd forecast adaptively the effective dynamics (AdaLED) of multiscale systems. AdaLED employs an autoencoder to identify
educed-order representations of the system dynamics and an ensemble of probabilistic recurrent neural networks (RNNs) as
he latent time-stepper. The framework alternates between the computational solver and the surrogate, accelerating learned
ynamics while leaving yet-to-be-learned dynamics regimes to the original solver. AdaLED continuously adapts the surrogate
o the new dynamics through online training. The transitions between the surrogate and the computational solver are determined
y monitoring the prediction accuracy and uncertainty of the surrogate. The effectiveness of AdaLED is demonstrated on three
ifferent systems - a Van der Pol oscillator, a 2D reaction–diffusion equation, and a 2D Navier–Stokes flow past a cylinder for
arying Reynolds numbers (400 up to 1200), showcasing its ability to learn effective dynamics online, detect unseen dynamics
egimes, and provide net speed-ups. To the best of our knowledge, AdaLED is the first framework that couples a surrogate
odel with a computational solver to achieve online adaptive learning of effective dynamics. It constitutes a potent tool for

pplications requiring many computationally expensive simulations.
2023 Elsevier B.V. All rights reserved.

eywords: Adaptive reduced-order modeling; Computer simulations; Machine learning; Online real-time learning; Continuous learning;
avier–Stokes equations

∗ Corresponding author.
E-mail addresses: ivicakicic@gmail.com (I. Kičić), pvlachas@ethz.ch (P.R. Vlachas), garampat@ethz.ch (G. Arampatzis),

michaich@ethz.ch (M. Chatzimanolakis), guibas@cs.stanford.edu (L. Guibas), petros@seas.harvard.edu (P. Koumoutsakos).
https://doi.org/10.1016/j.cma.2023.116204
0045-7825/© 2023 Elsevier B.V. All rights reserved.

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

1

e
fi
e

o
e
t
r
i
d

o
f
a
s
[
V

. Introduction

Simulations of complex systems have transformed our predictive capabilities in areas ranging from health and
pidemiology [1] to physics [2], meteorology [3], and fluid mechanics. Large-scale, simulations are prominent in
elds where experiments may be unavailable, such as astrophysics and climate sciences, or where they require
xpensive infrastructure, equipment, and personnel.

The predictive fidelity of the simulations depends on their capacity to resolve all relevant spatiotemporal scales
f the physical phenomenon under study. However, high fidelity implies high computational cost, which hinders
xperimentation and optimization. Many scientific and engineering tasks, such as parameter and design optimiza-
ion [4], multi-objective optimization [5], reinforcement learning (RL) [6–8], and high-throughput computing [9],
equire a large number of system evaluations. While using highly accurate simulations for these tasks is desirable,
t can also be cost-prohibitive and potentially infeasible. As a result, numerous research efforts have focused on
eveloping accurate and efficient surrogate models that can replicate and accelerate simulations.

While computationally costly simulations are essential in resolving all scales of a complex system, key quantities
f interest can be often described by a coarse-grained, averaged behavior. Selecting the proper degrees of freedom
or such coarse grained representations is a long standing problem in science and engineering. Furthermore,
ppropriate combinations of coarse-grained and fine-scale simulations, predictions offer the potential for accelerated
imulations at a controlled accuracy. Pioneering hybrid methods include the Equation-Free Framework (EFF)
10–12], the Heterogeneous Multiscale Method (HMM) [13,14], and the FLow AVeraged integratoR (FLA-
OR) [15]. Hybrid methods distinguish between a detailed high-dimensional physical space (micro scale) which is

expensive to simulate, and a coarse-grained, reduced-order, or latent space (macro scale). More specifically, in EFF,
a system is first advanced in the expensive micro-scale for a given time. Then, a transition is made into the macro
scale using a compression mechanism, such as Principal Component Analysis, Dynamic Mode Decomposition [16],
or diffusion maps [17]. EFF then employs time-stepping schemes such as Euler or Runge–Kutta to advance the
macro-scale dynamics. After several time steps, the macro-scale dynamics are mapped back onto the fine scale for
detailed simulation. By alternating between the micro-scale and the macro-scale dynamics at timescales of interest,
EFF can achieve significant computational savings. However, the generalization of EFF to complex high-dimensional
systems has been limited by the proper information transfer between micro and macro and the use of inefficient
macro-scale propagator.

In recent years there have been numerous efforts to develop reduced-order models and accelerate complex
simulations using machine learning (ML) [18–23]. In a previous works, we extended the EFF with ML algorithms
that learn the time integrators and the transfer operators in a data-driven manner. The resulting framework of
Learning the Effective Dynamics (LED) [24] of complex dynamical systems employs convolutional autoencoders
(CAEs) for the identification of the micro-to-macro and macro-to-micro mappings and recurrent neural networks
(RNNs) to propagate the macro dynamics. The autoencoder and the RNN are trained offline using data from the
micro propagator, i.e., the original simulator. LED has been applied to a variety of dynamical systems [25], from
fluid flows to molecular simulations [26].

We note that frameworks related to LED include the Latent Evolution of Partial Differential Equations (LE-
PDE) [27]. Meanwhile, CAEs coupled with Long Short-Term Memory networks (LSTMs) have been applied
in modeling complex flows [28–34]. Other autoencoders (AEs), coupled with LSTM networks have been em-
ployed for surrogate modeling of high-dimensional dynamical systems [35], e.g., unsteady flows over a circular
cylinder [36,37], or structural modeling of a two-story building [38]. Other notable works are based on Proper
Orthogonal Decomposition (POD) [39–43], local approximations with POD [44,45], Dynamic Mode Decomposition
(DMD) [16], and Dynamics Identification (ID) [46,47]. Adaptive extensions that utilize low-rank updates are
proposed in [48,49]. In [50,51], the authors propose online adaptive versions of the DMD algorithm.

However, to the best of our knowledge, the above mentioned frameworks do not entail one or more of the
following characteristics:

1. They lack continuous training, which limits their ability to adapt to changing dynamics or to generalize to
regions underrepresented in the initial training data.

2. They do not quantify prediction uncertainty or monitor prediction error.
3. They overlook that a surrogate should only be used when it is reliable.
4. They do not exploit the capability of restarting a computer simulation from any time point.
2

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

A
t
t

m
b
r
m
u
p
m
e

p
p

w
a
S
i
a

2

c
m
w
d
x

c

w
i
∥

i

d
s
o

5. They do not control the balance between speed-up and accuracy.
6. They do not account for variations in parameters of the fine-scale dynamics.

lthough multiple works present robust surrogate modeling frameworks, the need for real-time applications and
asks involving non-stationary dynamics or state-space exploration calls for continual learning frameworks to address
he problem of distribution shift [52].

Adaptivity and continual learning in forming surrogates are key components of the present paper. The proposed
ethod of Adaptive Learning of Effective Dynamics (AdaLED) accelerates computationally expensive simulations

y learning an online surrogate model that replaces the original simulator only when its predictions are sufficiently
eliable. More specifically, AdaLED extends the LED framework with uncertainty quantification. The surrogate
onitors its prediction accuracy and provides a confidence level for its predictions. In turn, the surrogate is

tilized only in state-space regions (parts of the trajectories) that it has learned and is confident about its
rediction. Otherwise, the computational solver is employed to simulate dynamics unknown to the surrogate
odel. Finally, we extend LED with continuous learning capabilities to address the distribution shift problem in

nvironments/dynamical systems with time-varying dynamics.
We demonstrate that AdaLED can adaptively learn complex dynamics, produce reliable surrogate model

redictions, and accelerate computationally expensive simulations while maintaining high accuracy. AdaLED
rovides control over the accuracy-speed trade-offs by adaptively specifying error thresholds for the simulation.

The paper is organized as follows: in Section 2, we present a detailed description of the AdaLED framework
hile in Sections 3 and 4, we demonstrate the efficiency and efficacy of AdaLED on the Van der Pol oscillator

nd a 2D reaction–diffusion system, respectively. In Section 5, we show how AdaLED can accelerate a 2D Navier–
tokes simulation of flow past a cylinder at varying Reynolds numbers. Section 6 concludes the paper. Technical

nformation on the neural networks and handling of very high-dimensional fluid flow states are provided in the
ppendix.

. Method

We consider the evolution of a dynamical system at a micro/fine scale, with a state denoted by xt ∈ Rdx at time
t . The state is advanced by δt using a micro propagator F , so that

xt+δt = F(xt , ft), (1)

where ft ∈ Rd f is the time-varying external forcing that affects the dynamics. Apart from xt , the simulation provides
access to quantities of interest denoted by qt ∈ Rdq , qt = Q(xt). We postulate that the effective system dynamics
an be approximated by lower-dimensional latent states zt ∈ Mz , where Mz ⊂ Rdz (with dz ≪ dx) is a low-order
anifold of the system state space. Here, we identify the latent space by employing an encoder EθE : Rdx → Rdz

ith trainable parameters θE . The encoder maps micro states xt to latent (macro) states zt = EθE (xt). In the other
irection, a decoder DθD : Rdz → Rdx , with trainable parameters θD, maps the latent state zt to the micro state

˜ t = DθD (zt). The optimal parameters θ∗

E and θ∗

D minimize an application-specific reconstruction loss ℓ(xt , x̃t):

(θ∗

E , θ
∗

D) = arg min
θE ,θD

ℓ (xt , x̃t) = arg min
θE ,θD

ℓ
(
xt ,DθD (EθE (xt))

)
. (2)

A non-linear macro propagator (Hθ M ,Zθ M ,Qθ M ,Sθ M), with parameters θ M and an internal hidden state ht

apturing non-Markovian effects, is trained to predict the system dynamics in the macro scale:

ht+∆t = Hθ M (zt ,qt , ft ,ht), z̃t+∆t = zt + Zθ M (ht+∆t), q̃t+∆t = qt + Qθ M (ht+∆t). (3)

here ∆t is the time step of the macro propagator, with ∆t being an integer multiple of δt . The macro propagator
s trained with backpropagation through time [53] to minimize the combined mean square error (MSE) loss
z̃t+∆t − zt+∆t∥+∥q̃t+∆t −qt+∆t∥. Optional weights can be added to each loss component to control their relative
mportance.

We note that the present framework also predicts physical quantities of interest while evolving the latent space
ynamics. Such quantities of interest q̃t+∆t could be computed by reverting to the fine-scale representation of the
ystem dynamics, i.e., q̃t+∆t = Q(DθD (z̃t+∆t)). However, this approach has two drawbacks: (i) it requires evaluation

θD
f the relatively expensive decoder D (ii) the function Q might not be explicitly available. Consequently, the

3

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

p
u
p
o

m
σ

T
l

m
a
c
b
t
t
p
t

Fig. 1. The stages of the inference, the AdaLED cycle. ■ denotes the micro propagator, • the macro propagator, the encoder, the
decoder, black line the micro (high-dimensional) state xt , purple the macro (latent) state zt , and gray the hidden state ht of the macro

ropagator. Quantities of interest qt and external forcing ft are hidden for brevity. Depending on the prediction error Et of the model and
ncertainty σt at the end of the online validation stage, either the macro-only or the micro-only stage is performed. The macro-only stage is
erformed as long as the uncertainty is below the threshold (possibly for 0 steps) or limited to a given number of steps. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

acro propagator is trained to predict q̃t+∆t directly. In addition, the macro propagator outputs the uncertainty
t+∆t ∈ R, i.e.

σt+∆t = Sθ M (ht+∆t). (4)

he uncertainty is used to robustly control the transitions between the micro and the macro propagator, as explained
ater in the text.

To achieve significant acceleration of the simulations, the macro propagator operates with a time step ∆t ≫ δt .
Here, the encoder and decoder are the two halves of a convolutional autoencoder, and the macro propagator
is an ensemble of probabilistic recurrent neural networks (PRNNs) (see Section 2.3). We note that AdaLED
can incorporate various encoders and decoders and accommodate any macro propagator that can estimate the
uncertainty of its own predictions. We will refer to the combination of the encoder, decoder, and propagator as
the Machine-Learned Model (MLM).

2.1. AdaLED cycle (inference)

Inference in AdaLED proceeds in an iterative fashion. In each iteration, AdaLED assesses the accuracy of the
MLM and temporarily shifts the simulation from the micro to the macro scale if the accuracy is sufficiently high.
This alternation between the scales allows the micro propagator to correct errors introduced by the MLM and guide
the simulation back to the manifold Mz . Additionally, the short cycles enable the MLM to replace the simulation
in sections of trajectories that it has learned so far. Other sections that are underrepresented in the training data or
require more extended training are left to the micro propagator. Finally, frequent evaluation of the micro propagator
also enables continuous gathering of training data.

Each computational cycle in AdaLED consists of three stages: (i) the warm-up stage, (ii) the online validation
stage, and (iii) either the micro-only or the macro-only stage (Fig. 1). In the warm-up stage, both micro and macro
propagators are running. In each time step, the micro state xt is passed through the encoder EθE and fed into the

acro propagator in order to warm up its hidden state ht (starting from ht = 0). In the online validation stage, micro
nd macro propagators run independently, in order to estimate the macro propagator’s prediction accuracy for the
urrent section of the system trajectory. At the end of the online validation stage, the final latent state z̃t is decoded
ack to the high-dimensional space, and an application-specific MLM prediction error Et = E(xt ,DθD (z̃t)) between
he micro state (the ground truth) and the MLM’s prediction is computed. If either the MLM prediction error Et or
he uncertainty σt of the macro propagator are above the transition thresholds Emax and σmax, respectively, the macro
rediction is discarded, and the simulation continues with the micro-only stage. However, if both are below error

˜
hresholds, the prediction zt of the macro propagator is accepted, and the simulation continues with the macro-only

4

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

w

Fig. 2. The inference and training loops. For performance reasons, training and inference are optionally performed in separate processes.
Such division naturally extends to multiprocess training, multiprocess simulations, and to multiple simulations.

stage. Cycles are described as accepted or rejected, depending on whether the macro prediction was accepted or
not.

In accepted cycles, the online validation stage is followed by the macro-only stage, where the micro propagator
is paused, and the only computation is done in the latent state using the inexpensive macro propagator. This stage
continues as long as the prediction uncertainty σt is below the threshold σmax. Once the threshold is violated,
the prediction for that step is dropped. Then, the latent state from the previous time step is decoded to the high-
dimensional state and passed to the micro propagator. An important assumption is that the micro propagator can be
reinitialized to an arbitrary state. Additionally, this stage is optionally limited to N max

macro-only steps. In Fig. 1, values
NX represent the number of time steps in the stage X .

2.2. Dataset and training

The trajectories xt produced by the micro propagator are sliced into trajectories of L time steps and stored in a
dynamic dataset of capacity D ≫ 1. The length L is set equal to the number of recorded states in accepted cycles:
L = 1 + Nwarm-up + Nonline-validation. Once the dataset is filled, when adding a new trajectory, an existing trajectory
selected uniformly at random is deleted. Randomly removing trajectories ensures that old trajectories are preserved
for a long time, alleviating the problem of catastrophic forgetting [54], i.e., neural network predictions deteriorating
in continuous learning for samples that they have seen in the past.

The autoencoder and the macro propagator are trained separately, one after the other, on a random subset of
the dataset. Training is performed continuously, either after each AdaLED cycle or asynchronously in parallel with
AdaLED cycles (Fig. 2). For inference, during one AdaLED cycle, the autoencoder and macro propagator parameters
are fixed.

2.3. Estimation of prediction uncertainty

In the macro stage of AdaLED, the trajectory predicted by the macro propagator will eventually diverge from
the ground truth, that the micro propagator would have produced, at a rate that depends on the complexity of the
system dynamics [19]. In this study, rather than manually selecting the number of macro steps, we adopt a robust
mechanism for estimating the duration of reliable coarse-grained predictions. To achieve this, we use probabilistic
networks and network ensembles [55].

The input data are denoted by x ∈ RNx , and the output data (targets) of a network whose prediction uncertainty
we want to estimate by y ∈ RNy . The output of the system is predicted via two networks. The first network is
parameterized with θµ and outputs the mean µθµ (x). This network is trained to minimize the MSE between the
target and the mean output, i.e.,

ℓMSE(θµ, x, y) =
1

Ny

Ny∑
i=1

(
µθµ (x)i − yi

)2
. (5)

A second network with parameters θσ outputs the variance Σ θσ (x) = diag(σ θσ (x)2) of a Gaussian distribution
θµ θµ θσ
ith mean µ , i.e., pθ (y|x) = N (y; µ (x),Σ (x)) [55,56], where θ = {θµ, θσ }. A diagonal covariance matrix is

5

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

c
i

T
a

T
t

p
i
σ

2

a
e
c

3

b
a
s
I

w

δ

onsidered here for simplicity. The details of the neural architecture are shown in Appendix A. This second network
s trained to minimize the negative log-likelihood loss (NLL):

ℓNLL(θσ , x, y) = − log pθ (y|x)

=
1
2

log
(
σ θσ (x)

)2
+

(
y − µθµ (x)

)2

2
(
σ θσ (x)

)2 + const.
(6)

he networks are trained together, and can be viewed as a single network with parameters θ , while the weights θµ

re considered fixed in the computation of the NLL loss. The total sample loss can be written as:

ℓ(θ , x, y) = ℓMSE(θµ, x, y) + ℓNLL(θσ , x, y), θ = {θµ, θσ }. (7)

his combination of MSE and NLL losses with decoupled gradients for θµ achieved higher accuracy than solely
he NLL loss.

Moreover, we consider an ensemble of K such probabilistic networks, each randomly initialized with its own
arameters θ k , k ∈ {1, . . . , K } and trained separately on the same data to minimize the loss ℓ(θ k, x, y). For a given
nput x, the outputs µ(k)

= µθk
µ (x) and σ (k)

= σ θk
σ (x) are combined into the final prediction µ(x) and uncertainty

(x) of the ensemble as follows [55]:

µ(x) =
1
K

∑
k

µ(k)(x),

σ 2(x) =
1
K

∑
k

(
σ (k))2(x)  

σ 2
ind(x)

+
1
K

∑
k

(
µ(k))2(x) − µ2(x)  

σ 2
std(x)

. (8)

The term σ ind in Eq. (8) refers to the prediction uncertainties as estimated by each network individually. On the
other hand, the term σ std measures the disagreement of the ensemble in the prediction of y. Thus, this term provides
an estimate of the training inaccuracy for the given input x. For unseen states x or states underrepresented in the
training data, we expected σ ind and σ std to be larger than for frequently seen states. From the vector uncertainty σ ,
the scalar uncertainty σ is defined as either σ = ∥σ∥2 or σ = ∥σ∥2/Ny .

.4. AdaLED hyper-parameters

The error thresholds Emax and σmax are application-specific and determine the trade-off between speed-up and
ccuracy. The latent state dimension dz of the autoencoder should be chosen based on the system dynamics and its
ffective degrees of freedom [24]. The remaining hyperparameters, such as network size and the number of layers,
an be determined through small-scale experiments and hyperparameter tuning.

. Case study: Van der Pol oscillator

We first demonstrate the capabilities of AdaLED on the Van der Pol oscillator (VdP), a system used as a
enchmark for a variety of multiscale frameworks [10,13,15]. In contrast to these frameworks, we do not distinguish
priori between fast and slow dynamics. Instead, we arbitrarily change the oscillator limit cycle and oscillation time

cale, which is controlled by the damping parameter µ, to demonstrate that AdaLED can adapt to these changes.
n this case study, no autoencoder is used, i.e., the encoder and the decoder are identity operators.

The Van der Pol oscillator [57,58] is a non-linear damped oscillator governed by the following equations:

dx
dt

= µ

(
x −

1
3

x3
− y

)
,

dy
dt

=
1
µ

x ,
(9)

here µ = µ(t) > 0 is a time-varying system parameter that controls the system’s non-linearity and damping.
The micro propagator is an ODE integrator based on the Euler method that integrates Eq. (9) with a time step of

t = 0.001 starting from a random initial condition (x , y) ∼ U([−5, 5]2). The macro propagator is an ensemble of
0 0

6

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

fi
a
v

∆

m
t
c
i
o
t
η

i

t

σ

i
m
r
m
t
m
r
m
a
a

c
T
i
µ

g
h

ve LSTMs. Their architecture is explained in Appendix A. The ensemble is trained to predict the dynamics with
macro time step of ∆t = 0.1. Each LSTM takes the tuple (x(t), y(t), µ(t)) as input and outputs the means and

ariances (µ∆x (t), µ∆y(t), σ 2
∆x (t), σ 2

∆y(t)) for residuals ∆x(t) = x(t + ∆t) − x(t) and ∆y(t) = y(t + ∆t) − y(t).
For a constant µ, the system enters a limit cycle whose shape depends on µ (Fig. B.1). For the values of µ and

t considered here, a single limit cycle is completed in about 60 to 90 macro time steps ∆t .
AdaLED cycles are configured to have 7 warm-up steps and 25 online validation steps. The maximum number of

acro and micro steps is selected for each AdaLED cycle uniformly at random between 80 and 120 steps in order
o avoid synchronizing the AdaLED cycle with the system limit cycle. We observed that such synchronization
auses the training dataset to be filled with data from the same limit cycle region while the rest of the cycle
s underrepresented. For a given cycle c, we define the macro utilization ηc = N c

macro-only/N c as the fraction
f steps performed in the macro-only stage, where N c

macro-only is the number of macro-only steps and N c the
otal number of steps of the cycle c. In rejected cycles, ηc = 0. The total macro utilization η is defined as
= (

∑
c N c

macro-only)/(
∑

c N c). Given the selected stage durations, the maximum attainable total macro utilization
s η ≈ 75.6%.

The maximum capacity of the dataset is set to 1280 trajectories. The training is performed at a fixed rate of 2
rajectories for each simulation macro step.

The prediction error is defined as E =
√

(xmicro − xmacro)2 + (ymicro − ymacro)2 and the prediction uncertainty as
=

√
σ 2
∆x + σ 2

∆y . The AdaLED transition thresholds are set to Emax = 0.10 and σmax = 0.10. We note that the
error threshold Emax refers to the accumulated error after 25 online validation steps and not a single-step prediction
error.

3.1. Results

We analyze the performance of AdaLED on three different cases of µ(t):

• µALT(t), a piecewise constant function alternating between values µ = 1.0 and µ = 3.0 every 50 000 time
steps,

• µRAND(t), a piecewise constant function with multiple randomly selected values µ ∈ [1.0, 3.0], and
• µBROWN(t), a piecewise constant function µRAND(t) augmented with Brownian-like noise (details explained in

Appendix B).

The system is integrated for 400 000 time steps. The hyper-parameters of the LSTMs are tuned in a preliminary
study reported in Appendix B.1.

The macro utilization for all three cases, together with the functions µ(t), are shown in Fig. 3. The case µALT(t)
s depicted in the top figure. The macro utilization at the start of the run is equal to zero, which is expected since the

acro propagator is untrained and produces inaccurate predictions. After about 8000 time steps, the prediction error
eaches the desired threshold and AdaLED starts accepting the prediction of the macro propagator. As a result, the
acro utilization increases gradually to 60%. At the time step 50 000, the value of µ(t) suddenly changes, putting

he system into an unseen regime. AdaLED correctly detects the change and starts rejecting the predictions of the
acro propagator, which suddenly became unreliable. However, soon after, the macro propagator learns the new

egime and its predictions are accepted again, leading to an increase in macro utilization, which approaches the
aximum of 75.6%. After 50 000 more time steps, the system switches back to µ = 3. The macro propagator has

lready observed and learned this regime, as demonstrated by the fact that AdaLED resumes uninterruptedly with
very high acceptance rate.
The results for the case µRAND(t), shown in the middle plot of Fig. 3, display similar behavior as the previous

ase. At the beginning of the simulation, all cycles are rejected until the network learns the corresponding regime.
his trend repeats after the first two changes in µ. From the third change onwards, we observe that AdaLED can

nterpolate between previously seen values of µ and can continue to produce accurate predictions despite changes on
RAND(t). This demonstrates the ability of AdaLED to learn and interpolate on unseen dynamical regimes adaptively.

Finally, the more complex case of a noisy µBROWN(t) is depicted in the bottom plot in Fig. 3. AdaLED again
radually learns to replace the micro propagator and adaptively learns the different dynamical regimes. However,
ere it takes longer for the macro propagator to reach the highest acceptance rate compared to the cases µ and
ALT

7

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

t
F

µ

l

a
e
d

t
c

Fig. 3. Macro utilization (fraction of steps performed in macro-only stage) for the Van der Pol oscillator case study for three different
variants of µ(t). The light green histograms show the macro utilization of each individual AdaLED cycle, and the dark green line the macro
utilization smoothed using a Gaussian blur (for visualization purposes only). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Visualization of the prediction error for each accepted cycle in the case µALT(t) of the Van der Pol oscillator case study. Left: error
at the end of the online validation stages, right: error at the end of macro-only stages. Diamonds denote micro states and empty circles the
macro states, colored with respect to the error E (Euclidean distance). The AdaLED cycles with endpoints outside of limit cycles correspond
o those during which the value of µALT(t) changed. The first such change at the time step 50 000 (encircled pair) is visualized in detail in
ig. 5.

RAND. We argue that this is due to the increased difficulty of the learning task, as data are generated from various
imit cycles with varying time scales.

The online validation errors and final testing errors (prediction error at the end of the macro-only stage) for each
ccepted cycle in case µALT(t) are depicted in Fig. 4. The testing error is calculated by running the micro propagator
ven during the macro-only stage, solely for evaluation purposes. In production runs, the micro propagator is inactive
uring the macro-only stages.

We observe that errors are generally small and almost every cycle ends very close to the limit cycles. Exceptions
o this trend occur during sudden changes of µ(t). It is important to note that the online validation errors (left plot)
an be directly controlled by adjusting the value of E . On the other hand, the testing error (right plot) can be
max

8

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

F
o
o
u
u
t

4

f
d
m
t

2
m
σ

i
s

o
1
C
t

Fig. 5. AdaLED cycle around the time step 50 000 at which µALT(t) switches from value 3.0 to 1.0. Blue diamonds ■ denote the micro
states, red circles • the macro states, and red ellipses the ensemble covariance. The plot shows that, due to the different responses of
individual LSTMs in the ensemble to the value of µ(t), AdaLED quickly detected the change in dynamics and stopped the execution of the
macro propagator.

controlled only indirectly through Emax and σmax, and thus serves as a measure of the robustness and quality of the
surrogate model. This highlights the advantage of AdaLED compared to other multiscale frameworks, as it allows
for control over the error thresholds a priori.

The behavior of the system during the first change of µALT, happening at time step 50 000, is visualized in
ig. 5. Prior to that change, the LSTMs were trained only on trajectories with µ = 3. As a result, the predictions
f individual networks in the ensemble are alike and accurate for this particular regime. However, once the value
f µALT(t) changes, different LSTMs in the ensemble respond differently to µ = 1, since the predictions for the
nseen regimes are arbitrary and depend on weight initialization. This causes the predictions to diverge and the
ncertainty to increase (as defined in Eq. (8)). When the uncertainty crosses the threshold σmax after seven steps,
he cycle terminates. The 7th step is rejected and therefore excluded from the plot.

Additional results on the dependence of the testing error on the uncertainty threshold σmax and the ensemble size
K are presented in Appendix B.2.

. Case study: Reaction–diffusion equation

Here, we test AdaLED on the lambda-omega reaction–diffusion system [59,60] governed by:
∂u
∂t

= [1 − (u2
+ v2)]u + β(u2

+ v2)v + d1∇
2u,

∂v

∂t
= −β(u2

+ v2)u + [1 − (u2
+ v2)]v + d2∇

2v

(10)

or −10 ≤ x, y ≤ 10, where β = 1.0 is the reaction parameter and d1 = d2 = d = d(t) the time-varying
iffusion parameters. The equation is integrated on a 96 × 96 uniform grid using the Runge–Kutta–Fehlberg
ethod of fourth order with a time step of ∆t = 0.05. Thus, the state of the system is fully described by a

ensor w = (u, v) ∈ R2×96×96. The system exhibits a spiral wave whose shape depends on the parameter d .
We evaluate the performance of AdaLED with the diffusion parameter d alternating between 0.1 and 0.2 every

0 000 time steps. AdaLED cycles are configured to have 5 warm-up steps, 18 online validation steps, 10 to 15
icro-only steps, and 400 to 500 macro-only steps. The AdaLED transition thresholds are set to Emax = 0.002 and

max = 0.002. We use the mean square error (MSE) between the macro and the micro state w as the error metric,
.e., E = E(w, w̃) = ∥w − w̃∥

2
2/(2 · 96 · 96). The simulation is run for 200 000 time steps. Other details of the

ystem, the neural networks, and the training are listed in Appendix C.
The macro utilization η and test errors E are shown in Fig. 6. Similar to the Van der Pol oscillator case study, we

bserve that the macro utilization is initially zero, as the networks are not yet trained. However, after approximately
0 000 time steps, the autoencoder learns to reconstruct the state, and the LSTMs learn to predict the dynamics.
onsequently, AdaLED begins to accept the macro prediction. When the diffusion parameter d changes from 0.1

o 0.2, AdaLED recognizes the unreliability of the macro predictions and switches back to the simulator. Once the
9

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

a
t

m

n
e
0
r

T
a
m
s

Fig. 6. Performance on AdaLED on the reaction–diffusion case study with a time-varying diffusion parameter d (blue line). Top: macro
utilization (fraction of steps performed in macro-only stage). The light green histograms show the macro utilization of each individual AdaLED
cycle, and the dark green line shows the macro utilization smoothed using a Gaussian blur (for visualization purposes only). Bottom: test
error of the reconstructed state w. The per-step errors (faded red) alternate between low values at the beginning of the macro-only stage
nd higher errors at the end of the macro-only stage. The dark red denotes the smoothed test error, and the dashed red the online validation
hreshold Emax. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Snapshot of the simulation at time step 200000, 305 steps into the macro-only stage. Left: the micro propagator (ground truth),
iddle: the AdaLED Machine-Learned Model, right: absolute error. The mean square error amounts to E = 0.0021 (relative error of 0.0045).

ew regime is learned, AdaLED resumes using the macro propagator. The bottom plot of Fig. 6 shows the test
rrors E . Overall, the macro utilization reaches 75% ± 1%, with an MSE of 0.0055 ± 0.0013 (relative MSE of
.012 ± 0.003). The reported confidence levels are based on the variance calculated from ten repeated simulation
uns.

Fig. 7 shows a snapshot of the simulation at the time step 200 000, 305 time steps into the macro-only stage.
he predicted and expected states are in agreement, demonstrating the accuracy of the macro propagator even
fter performing the simulation for a significant number of time steps in the latent space. The micro states during
acro-only stages are retrieved for testing purposes by continuing the micro simulation even during the macro-only

tage.
10

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

c
t
(
o
t

e

w
v
c
a
t
h
v

r
m

o
c
f
r
t
F
e
t

t
q
b

a

Fig. 8. Schematic view of the multiresolution AE. To accelerate the training and reduce the storage and memory requirements, the AE
operates on two downsampled variants of the velocity field. The yellow region denotes the blending mask used for reconstructing the full
resolution field. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Case study: 2D flow past a cylinder

Finally, we employ AdaLED to accelerate a 2D Direct Numerical Simulation (DNS) of the flow past a circular
ylinder at varying Reynolds numbers. AdaLED is trained to forecast the velocity field, representing the state of
he flow. Forecasting the complete simulation state enables the alternation between macro (latent) and micro scale
the DNS). In addition to predicting the state, AdaLED is also tasked with predicting the force exerted by the fluid
n the cylinder. The force serves as the quantity of interest q(t) that we want to have access to at all time steps of
he simulation.

The system is governed by the incompressible Navier–Stokes equations and the no-slip boundary condition is
nforced via the Brinkman penalization [61]:

∇ · u = 0, (11)
∂u
∂t

+ (u · ∇)u = −
1
ρ

∇ p + ν∇2u + λ(us
− u)χ, (12)

here u = u(x, t) is the fluid velocity field, ρ = 1 the fluid density, p = p(x, t) the pressure, ν = 10−4 the kinematic
iscosity, λ = 106 Brinkman penalization coefficient, us

= us(t) the velocity of the cylinder and χ = χ (x, t) the
haracteristic function of the cylinder, equal to 1 inside the cylinder and 0 outside it. The equation is solved on
[0, 1] × [0, 0.5] domain with open boundary conditions. A solid cylinder of diameter d = 0.075 is fixed at

he coordinate (0.2, 0.25) relative to the simulation domain. The cylinder and the simulation domain are moving
orizontally at the speed of us

x (t) = Re(t)ν/d relative to the fluid, with Reynolds number Re(t) (the external forcing)
arying between Re = 400 and Re = 1200. In this range, for a fixed Re, a vortex street forms behind the cylinder.

Eqs. (11) and (12) are solved using a pressure projection method [62] on an adaptive Cartesian mesh of maximum
esolution of 1024 × 512 cells. For the purpose of this study, the adaptive, non-uniform mesh is interpolated to the
aximum resolution of 1024 × 512 cells and is thus treated as a uniform mesh when used by AdaLED.
In an effort to reduce the computational demands of the high-dimensional grid and speed up the training process

f AdaLED, we propose a novel multiresolution physics-based AE. The proposed AE takes advantage of the
haracteristics of the flow and uses a reduced-resolution grid far from the cylinder where the flow exhibits simpler
eatures compared to the vicinity of the cylinder. Concretely, the AE operates on two downsampled grids: a half-
esolution grid spanning the entire domain and a small full-resolution patch around the cylinder (Fig. 8). By utilizing
his multiresolution approach, we are able to reduce the storage and memory requirements and speed up the training.
urthermore, the AE outputs the stream function instead of the velocity field [63]. This physics-inspired architecture
nsures zero divergence of the velocity field (as per Eq. (11)). An additional physics-based vorticity loss is added
o improve performance. The specifics are outlined in Appendix D.1.

In addition to the latent state z(t), which is necessary to recreate the system dynamics and support macro-to-micro
ransitions, the MLM also outputs the force Fcyl(t) exerted by the fluid on the cylinder as the quantity of interest
(t). The relative importance of Fcyl and z in the macro propagator’s training loss and uncertainty estimation can
e controlled by scaling the force with some factor αF .

The macro propagator is an ensemble of five probabilistic LSTMs. Each LSTM is trained to predict the mean

nd the variance of the residuals ∆z(t) = z(t + ∆t) − z(t) and ∆q(t) = q(t + ∆t) − q(t), q(t) = αF Fcyl(t). The

11

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

a

t
1

b
A
s
p
e
T

5

c
w
m

5

b
t
e
t

e
c
fi
n

w
s
s

A
t
m
f

s

cceptance criterion is based on a relative reconstruction error E of the velocity field

E(ũ,u) =
∥u − ũ∥

2
2

∥u∥
2
2

, ∥u∥
2
2 =

∑
i j

u2
i j , (13)

where u is the full-resolution velocity field from the micro propagator, and ũ = DθD (z̃) the prediction of the
ML model. The autoencoder itself is trained on a different loss function, explained in Appendix D.1. The total
uncertainty σ of the prediction of the macro propagator is defined as the standard deviation of the uncertainty
vectors σ =

√(
(σ∆z(t))2 + (σ∆q)(t)2

)
/(dz + 2).

The time step of AdaLED is set to ∆t = 0.005, resulting in approximately 60 AdaLED time steps per vortex
street period for Re = 1000. The internal time step of the micro propagator δt is, for simplicity, fixed throughout
he simulation. For simulations with Re(t) of up to 1000, δt = 0.005/18, and for simulations with Re(t) of up to
200, δt = 0.005/21, resulting in a Courant number of ∼0.4.

We use AdaLED cycles of 4 warm-up steps, 12 online validation steps, between 400 and 500 macro steps, and
etween 9 and 14 micro steps. Both limits are chosen uniformly at random for each cycle to avoid synchronizing
daLED cycles with vortex street periods. The capacity of the dataset is set to 256 trajectories. To maximize the

peed-up of AdaLED, training is performed on a separate compute node in parallel with the inference and the micro
ropagator, as depicted in Fig. 2. Experiments were conducted on the Piz Daint supercomputer on two XC50 nodes,
ach equipped with one 12-core Intel Xeon E5-2690 CPU running at 2.6 GHz and one Nvidia P100 16 GB GPU.
he simulations were performed using the CubismAMR software [64].

.1. Results

In Section 5.1.1, we demonstrate the effectiveness of AdaLED in accelerating the simulation of the flow past the
ylinder without sacrificing accuracy. In Section 5.1.2, we highlight the importance of adaptive training in systems
ith changing dynamics. Finally, in Section 5.1.3, we conduct an ablation study to evaluate the advantage of the
ultiresolution autoencoder.

.1.1. Effectiveness of AdaLED
We perform the simulation for a total of 300 000 time steps, with Reynolds number transitioning cyclically

etween Re = 600, Re = 750, and Re = 900 every 5000 time steps. The hyper-parameters, listed in Table 2, are
uned according to the performance on a shorter simulation, as reported in Section 5.1.3. For this simulation, the
rror and uncertainty thresholds are set to Emax = 0.017 and σ 2

max = 0.00035, respectively. We note that these are
he key AdaLED hyper-parameters that can be adjusted to balance accuracy and acceleration as desired.

The Re(t) profile, the macro utilization, and the errors are displayed in Fig. 9. The errors correspond to validation
rrors during the online validation phase and test errors during the macro-only stage. To calculate these errors, we
ompare the micro states ut with the reconstructed states ũt = DθD (z̃t) produced by the MLM. We use the velocity
eld error metric E from Eq. (13) to quantify the error in the velocity field. For the force Fcyl error, we define a
ormalized error EF as follows:

EF = EF (F′

cyl,Fcyl) =
∥F′

cyl − Fcyl∥

Favg
cyl

, (14)

here Favg
cyl =

⟨
∥Fcyl∥

⟩
≈ 0.079 is the average magnitude of the force. For testing purposes, to retrieve the micro

tates ut , we continue running the simulation even in the macro-only stages. The training of the MLM is temporarily
uspended during this time.

In Fig. 9, we observe the same trend as in the previous two case studies. Initially, the macro utilization is zero.
fter the networks become sufficiently trained, the framework starts to accept the predictions of the MLM. As

raining continues, the errors and uncertainties decrease, resulting in an increase in macro utilization. During the
acro-only stage, the testing error E and EF remain low, averaging to 1% and 5%, respectively. The errors can be

urther decreased at the cost of reduced speed-up.
In Fig. 10, we present a closer look at how error and uncertainty change over a selected section of the trajectory,
pecifically during the transition from Re = 900 to Re = 600. The acceptance of the macro prediction is determined

12

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

f
t
v

b
t
f
p
n
a
e

t

Fig. 9. AdaLED performance on a flow behind cylinder simulation for Re(t) ∈ {600, 750, 900} (Section 5.1.1). Top: Reynolds number
Re(t) profile and the macro utilization η. Middle and bottom: validation errors of the velocity (E , Eq. (13)) and force on the cylinder
(EF , Eq. (14)). The per-step errors (faded red) alternate between low values at the beginning of the macro-only stage and higher errors
at the end of the macro-only stage. The errors for velocity stay close to 1% on average (dark red) and close to 5% for the force (with a
cross-correlation of 0.99). The errors refer only to macro-only steps. A detailed view of errors in a short simulation section is shown in
Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. A detailed view of the part of the simulation of flow behind the cylinder from Section 5.1.1 and Fig. 9, during the Re = 900 to
Re = 600 transition. Top: velocity validation error E and the squared uncertainty σ 2 (dotted for warm-up and online validation stages, solid
or macro-only) and their thresholds Emax and σ 2

max (dashed). Bottom: horizontal force on the cylinder (blue), vertical force (orange), and
he macro’s prediction (dashed black). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

y the error E and its threshold Emax. Before the Re transition, the online validation error remains below the
hreshold, and AdaLED accepts the macro prediction. However, during the transition period, which lasts for a
ew hundred time steps, the MLM cannot reliably predict the dynamics. Hence, AdaLED switches to the micro
ropagator instead. Once the transition period ends, AdaLED resumes utilizing the macro propagator. It should be
oted that the error E may exceed the threshold Emax at times. The threshold Emax represents the maximum error
t the end of the online validation stage, so it should be set to a value lower than the desired maximum tolerable
rror.

In contrast to the error E that controls whether AdaLED enters the macro-only stage, the uncertainty σ and the
hreshold σ control its duration. Once σ exceeds σ , the macro-only stage is stopped.
max max

13

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

t
s
T
c
d

t
n
t

I
a
a
e

Table 1
Average execution times per time step for the simulation setup from Section 5.1.1, together with
the speed-up and the macro utilization η.

Operation Execution time [ms] Comment

without AdaLED
micro propagator 969

with AdaLED
micro propagator 1055 larger internal mesh
overhead of AdaLED 13 autoencoder, LSTMs, data handling...
training N/A running on another compute node
average 339 2.9× speed-up (η = 69%)
average (last 15k time steps) 225 4.3× speed-up (η = 80%)

The accuracy of the predicted force Fcyl is illustrated in the bottom plot of Fig. 10. We observe a good
agreement between the two force profiles. A visual representation of the latent trajectory can be found in Fig. D.4
in Appendix D.5.

A snapshot of the simulation during the macro-only stage is visualized in Fig. 11. We observe that AdaLED
reproduces the state of the simulation accurately and captures the characteristics of the flow with high accuracy.
Notably, errors concentrate on the fine-scale structures of the flow. Arguably, the double arcs in the error profile
indicate that the error can be partially attributed to the macro propagator advancing the dynamics at an incorrect
speed.

The execution time of the standalone simulation and the AdaLED-accelerated simulation is compared in Fig. 12.
The green area represents the time saved by using AdaLED. The total macro utilization over the whole run (300 000
time steps) is 69%, achieving a speed-up of approximately 2.9×. After the training converges, the macro utilization
reaches 80% in the last 15 000 time steps, resulting in a speed-up of 4.3×. This implies that the trained MLM can
be applied to other simulations with Re ∈ {600, 750, 900} achieving similar performance.

We remark that the reported 2.9–4.3× speed-up is modest. This is a result of the frequent transition to the micro
model, which is a trade-off we take to ensure that the (rather stringent) accuracy threshold is satisfied. The constraint
of accuracy is unique to the present algorithm over other surrogate techniques (including the original LED [24]).
In order to increase the speed-up, we either need to improve the accuracy of the macro model (to have longer
macro-only stages), reduce the duration of the online validation stage, or even remove the warm-up stage.

The execution time breakdown of each simulation time step is presented in Table 1. By itself, the micro
propagator (without any use of AdaLED) takes on average 969 ms per time step for the given profile of Re(t)
(larger Re are slower to simulate). When used within AdaLED, the micro propagator is slower, down to 1055 ms
per step (+9%). This is due to the fact that we employ a solver [64,65] with adaptive mesh refinement. Namely, after
he first micro-to-macro transition, the imperfect autoencoder reconstruction causes a slight increase in the mesh
ize. We report speed-ups compared to the original simulation without AdaLED to guarantee a fair comparison.
he overhead of AdaLED (autoencoder, macro propagator, data handling, logging and diagnostics) is small in
omparison, averaging to only 13 ms per time step. This refers to the total time spent outside the micro propagator,
ivided by the number of steps.

As mentioned earlier, the training is performed on a separate compute node. Therefore, it causes no overhead
o the micro propagator or the networks. Although this increases the computational cost, the training cost becomes
egligible once AdaLED is used to accelerate large tasks that require many simulations in parallel. We note that
he trained surrogate can be saved and reused for simulations with similar dynamics.

We conclude that for computationally expensive CFD simulations, the overhead of AdaLED itself is minimal.
n this case, the speed-up is determined solely by the macro utilization. Higher speed-ups can be achieved by
ffording higher errors (increasing the error thresholds) or employing more accurate models. The latter can be
chieved through network architecture improvements, more effective training procedures, larger ensembles, or more
xtensive tuning.
The results of a run with a different Reynolds number profile are shown in Appendix D.6.

14

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

a

c
t

s
i
v
fi
t

Fig. 11. Snapshot of the time step 212500 (Re = 600) of the simulation from Section 5.1.1, 50 time steps into the macro-only stage, with
relative error of E ≈ 0.014 (Eq. (13)). Left: micro propagator state ut and vorticity ωt , middle: the prediction of the surrogate (MLM)

and full-resolution reconstruction, right: absolute error.

Fig. 12. Smoothed time step execution time with and without AdaLED for the simulation setup from Section 5.1.1. The speed-up factor
onverges to 4.3× (Table 1). The periodic changes in the execution time correspond to the periodic changes of the Reynolds number (see
he top plot in Fig. 9).

Table 2
Parameter search space for the multiresolution autoencoder study, and the selected parameter set.

Parameter Search space Selected

multiresolution? no yes yes
inner resolution N/A {256 × 256, 224 × 224} 224 × 224
of CNN layers {5, 6} {4, 5} 4
channels/layer {16, 20, 24} 16
dz (per resolution) {4, 8, 12, 16, 24} 8
AE learning rate LogUniform(0.0001, 0.001) 0.00047
LSTM learning rate LogUniform(0.0003, 0.003) 0.00126
scaling αF LogUniform(0.03, 30.0) 7.2
Emax LogUniform(0.001, 0.1) 0.017
σ 2

max LogUniform(0.00001, 0.1) 0.00035

5.1.2. The importance of adaptivity
In the following, we demonstrate the importance of adaptivity, i.e., constantly training throughout the whole

imulation and adapting to new states and trajectories, compared to pretraining or training only until a given point
n time. We analyze two profiles of time-varying Reynolds numbers Re(t). In the first, Re(t) switches between
alues 500, 750, and 1000 in a zig-zag fashion throughout the whole simulation. In the second, Re(t) starts as the
rst profile but switches to a different regime (400, 600, 800, 1000, and 1200) in the second half of the simulation,

o emulate a system that enters a new regime late in the simulation. For each profile, two setups are tested: one
15

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
Fig. 13. The adaptivity and transition delay study from Section 5.1.2 for the Re(t) with a fully repeating profile. Lines denote: adaptive
without delay (A), non-adaptive without delay (B), adaptive with delay (C), non-adaptive with delay (D). Top: Reynolds
number profile, middle: macro utilization η, bottom: smoothed relative MSE of the velocity in macro-only stages. Shaded regions, where
available, denote the standard deviation along five repeated runs of the same setup.

with training enabled all the time (adaptive) and one with training enabled only at the first half of the simulation
(non-adaptive).

Apart from testing adaptivity, we test how disabling micro-to-macro transitions in the first half of the simulation
affects the quality of the MLM in the second half. Namely, we expect that delaying initial transitions and providing
more time for training may help improve the accuracy and macro utilization in the later stages of the simulation.
Thus, for each Re(t) profile, we test in total four setups: adaptive without delay (A; default AdaLED behavior),
non-adaptive without delay (B), adaptive with delay (C), and non-adaptive with delay (D). For each setup, five runs
with different random seeds are performed to obtain the variance in performance.

The macro utilization and relative MSE on the velocity for the first Re(t) profile are visualized in Fig. 13. We
observe that training only in the first half with transitions disabled (the setup D) achieves higher accuracy in the
second half of the simulation compared to other setups. In fact, the non-adaptive setup D exhibits higher macro
utilization and lower error compared to the adaptive setup C. This is expected as the training dataset from the first
half of the run already contains all the information needed to forecast effectively the dynamics in the second half
(the profiles are similar). As a consequence, there is no need for online training.

However, we observe a different phenomenon when the system regime changes over time, as shown in Fig. 14.
Here, the macro utilization in non-adaptive setups B and D drops to zero when the system enters the previously
unseen Re(t) = 1200 regime, whereas the adaptive setups A and C eventually adapt and achieve macro utilization
of 25 to 35%.

We note here that the available training time for setups D and C is higher. While setups A and B accelerated
the simulation from the start and had only 6 h for training during the first half of the simulation, setups D and C
took 11 h for the first half and thus had almost twice as much time for training before being tested in the second
half. We argue that this phenomenon is an important characteristic property of online surrogates, i.e., the higher
speed-up they achieve, the less time they have for training.

5.1.3. Multiresolution autoencoders
In this section, we perform an ablation study to analyze the benefit of the multiresolution convolutional

autoencoder. We compare three cases: (i) single resolution, (ii) multiresolution with a 256 × 256 patch around
the cylinder, and (iii) multiresolution with a 224 × 224 patch. For each case, we perform 80 runs with randomized
thresholds Emax and σmax, learning rates, force scaling αF , latent state size dz , number of CNN channels, and the

number of layers. The hyper-parameter search space is listed in Table 2. The CNN architecture, the remainder of

16

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

s

T

t
r
i
d
r
d

Fig. 14. Analogous of Fig. 13, for the Re(t) that changes the profile in the second half of the simulation. The drop in performance in the
econd half is clearly visible for the non-adaptive cases (B and D).

Fig. 15. Multiresolution autoencoder multi-objective study (Section 5.1.3), optimizing for total macro utilization η and velocity error E .
he lines represent the Pareto fronts for each autoencoder setup. Darker symbols denote samples that are also optimal in the η–EF sense

(Fig. 16). The encircled sample is the reference parameter set used in the rest of the study.

hyper-parameters, and the breakdown of training execution time are described in Appendix D.4. The simulation
setup matches the one from Section 5.1.1 (Reynolds number Re(t) cycles between 600, 750, and 900 every 5000
time steps), with a shorter running time of 60 000 time steps. On average, a single simulation run takes approximately
16 h to complete. Three performance metrics are considered: total macro utilization η, average velocity relative MSE
E (Eq. (13)), and the average force error EF (Eq. (14)). The averages include only the macro-only stages.

The results of the comparison are shown in Figs. 15 and 16, where the macro utilization is plotted against the
average errors E and EF , respectively. We observe a clear advantage of the multiresolution approach compared to
he single-resolution autoencoder in terms of both macro utilization and accuracy. The encircled point in the plots
efers to the hyper-parameter set used in Sections 5.1.1 and 5.1.2, which resulted in a macro utilization of 54%
n 60 000 time steps (69% when run for 300 000 time steps). The performance of this hyper-parameter set on a
ifferent Reynolds number profile is shown in Appendix D.6. It is important to note that the results are subject to
andom variations, with errors varying by about ±5% (relative) and macro utilization varying by ±3% (absolute),

epending on the random seed.

17

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

i
t
a
t
e
s

s
b
i
m

A
s
a
o
i

Fig. 16. Analogous of Fig. 15, with x-axis denoting the average normalized cylinder force root MSE EF instead of the velocity field error
E . Here, darker symbols denote optimal samples in the η–E sense.

6. Discussion

We present AdaLED, a framework that employs CAEs and an ensemble of RNN-LSTMs to learn data-driven,
online, adaptive machine-learned models to accelerate the simulations of complex systems. The model is trained
in parallel with the original simulation (micro propagator) and can adapt online to newly discovered dynamics.
More importantly, the model monitors its accuracy and prediction uncertainty and replaces the micro propagator
only when its accuracy is high, and its uncertainty is low. This mechanism enables the acceleration of simulations
for sections of the state space that are learned, even if the model cannot or is not yet fully trained to faithfully
reproduce the whole complex state space dynamics. In regions of the state that are underrepresented or not part of
the training data, AdaLED utilizes the original computational solver.

We demonstrate AdaLED in three benchmark problems: the Van der Pol oscillator dynamics with varying
parametric nonlinearity µ ∈ [1, 3], a 2D reaction–diffusion equation with varying diffusion parameter d ∈ [0.1, 0.2],
and flows past a circular cylinder at varying Re ∈ [400, 1200]. On these benchmarks, we demonstrate its ability to
train a machine-learned model progressively, exploit its predictions only when they are reliable, and detect when a
system enters an unseen regime in the phase space. The trained model demonstrates high accuracy in all dynamic
regimes seen during training and does not suffer from catastrophic forgetting.

On the flow past a cylinder at varying Re, AdaLED, starting from untrained networks, reproduces the dynamics
of vastly different dynamical regimes, achieving a net speed-up of 2.9× for a 3-day-long simulation. This speed-up
s achieved at the cost of a mean square error of only ∼1% on the velocity field, ∼5% root mean square error of
he force on the cylinder and cross-correlation of 0.99. The speed-up can be increased further at the cost of lower
ccuracy by increasing Emax and σmax. We emphasize the advantage of AdaLED compared to other frameworks
o control this trade-off between speed-up and accuracy. To our knowledge, AdaLED is the first method that can
fficiently learn to propagate the high-dimensional dynamics of a complex flow at various regimes using a single
urrogate, offering a robust accuracy vs. speed-up trade-off.

Our findings suggest that AdaLED is a potent adaptive algorithm for adaptively constructing and interfacing
urrogates that accelerate complex multiscale simulations. We believe that AdaLED can be employed as a black
ox accelerator that takes advantage of repeating patterns in computation-heavy tasks. In the future, we plan to
nvestigate its acceleration capabilities on reinforcement learning tasks and model parameter optimizations, where

ultiple simulations can share the same surrogate.
Moreover, we argue that the proposed framework is a valuable contribution to the digital twin literature [66,67].

daLED combines data assimilation, real-time monitoring, and online adaptive data-driven learning to build a
urrogate. The proposed framework is directly applicable if the simulation of the physical system is possible from
ny initial condition at will. Otherwise, it can be applied only with minor modifications (by turning off the restarting
f the micro-scale solver). This way, the framework can be employed to learn a digital replica of a physical system,
.e., the digital twin. The surrogate’s response under different conditions and parametrizations can be tested at will,
18

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

a
t

a
c
fl
f
F
o
d

s
d
s

m
t
t
o

o
c
t

m
o

q
A

D

h

C

A

D
F
a

A

n

voiding the cost and computational burden of experiments or fully resolved simulations and the risk of exposing
he original system to adverse conditions [22,68].

Application-wise, AdaLED can benefit from more advanced autoencoders, such as variational autoencoders [69],
utoencoders that take into account temporal correlations [70], or non-uniform autoencoders based on space-filling
urves [71] and octrees [72,73]. A topic of ongoing research is to utilize the latter to help scale AdaLED to 3D
uid flows. Moreover, all latent state variables are currently treated as equally important. The method could benefit
rom compression techniques that can estimate the relevance of each latent dimension in the reconstruction [74].
urthermore, by removing the autoencoders and employing Convolutional RNNs [75], we can enable the application
f the framework in dynamical systems that do not require the existence of a low-dimensional manifold in the
ynamics.

Recently proposed hierarchical deep learning time-steppers [76], reduced-order propagators on the latent
pace [77], and Autoformer networks [78] demonstrate promising results in PDEs and other complex time-series
ata. These algorithms can be employed as efficient macro propagators. Having a very fast macro propagator opens
pace for more advanced techniques, such as planning optimal actions in reinforcement learning [79].

Likewise, if the application allows it, we could detect dynamic regimes underrepresented in the data by simulating
any steps in advance and looking at the future prediction uncertainty to determine if we should perform a macro-

o-micro transition early. An additional network could be trained to estimate the decoder reconstruction error given
he current latent state. Combined with the macro propagator, the macro-to-micro transition criteria could be based
n the joint uncertainty of the ensemble and this reconstruction error.

AdaLED attempts to solve a non-convex optimization problem in an online fashion. Benchmarking against linear
nline learning frameworks like DMD [50,51] is left for future work. Moreover, linear online learning frameworks
an be extended with the uncertainty estimation mechanism and online validation phases of AdaLED to enhance
he robustness and increase speed-up.

Furthermore, we plan to investigate improved scheduling and refined control of AdaLED cycles and the micro–
acro transitions to reduce the total number of time steps performed in the micro-scale and to provide more control

ver the trade-off between the adaptivity versus speed-up.
Finally, recent research [80] suggests that even though deep ensembles improve upon other uncertainty

uantification methods [81–83], they may still become over-confident outside the training domain. In this direction,
daLED can benefit from novel algorithms for uncertainty quantification of supervised learning algorithms [84].

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ode availability

The source code will be made readily available at https://github.com/cselab/adaled upon publication.

cknowledgments

We acknowledge support from The European High-Performance Computing Joint Undertaking (EuroHPC) Grant
CoMEX (956201-H2020-JTI-EuroHPC-2019-1), the Air Force Office of Scientific Research (MURI grant no.
A9550-21-1-005) and the Department of Energy (Grant DE-SC0022199). We gratefully acknowledge the service
nd computing resources from the Swiss National Supercomputing Centre (CSCS) under projects s930 and s1160.

We would like to thank Pascal Weber (ETHZ) for several useful discussions.

ppendix A. Macro propagator LSTMs

The macro propagator of AdaLED is an ensemble of multi-layer long short-term memory (LSTM) [85] recurrent
dξ dh dh
eural networks (RNNs). Given an input state ξ t ∈ R , the current hidden state ht ∈ R and the cell state ct ∈ R ,

19

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

e

w
s

w
a
m
p
W

t
a
o
(
l
w

A

s

µ

1
µ

w

ach layer of each network computes the next hidden state ht+∆t and the cell state ct+∆t as follows (layer and
ensemble notation omitted for brevity):

it+∆t = σ (Wi [ξ t ,ht] + bi),
ft+∆t = σ (W f [ξ t ,ht] + b f),

gt+∆t = tanh
(
Wg[ξ t ,ht] + bg

)
,

ot+∆t = σ (Wo[ξ t ,ht] + bo),
ct+∆t = ft+∆t ⊙ ct + it+∆t ⊙ gt+∆t ,

ht+∆t = ot+∆t ⊙ tanh (ct+∆t) ,

(A.1)

where it , ft , gt , and ot are input, forget, cell, and output gates, respectively. Matrices Wi , W f , Wg , Wo ∈ Rdh×(dh+dz),
and vectors bi , b f , bg , bo ∈ Rdh are trainable parameters. Square brackets [. . .] denote concatenation, σ the sigmoid
function, and ⊙ element-wise multiplication.

The input state ξ (1)
t of the first layer is equal to ξ (1)

t = [zt ,qt , ft], where zt ∈ Rdz is the latent state, qt ∈ Rdq

the quantities of interest, and ft ∈ RdF the external forcing. In the Van der Pol oscillator (VdP) study, zt = z(t) =

[x(t), y(t)], and ft = f (t) = µ(t). In the reaction–diffusion case study, zt is the output of the autoencoder, and
ft = d(t). In the CFD study, z(t) is the output of the (multiresolution) autoencoder, q(t) = αF Fcyl(t) the scaled
force on the cylinder, and f (t) the normalized Reynolds number f (t) = R̃e(t) = 2.4Re(t)/Remax − 1.2. In studies

ith Re ≤ 1000, Remax = 1000, and in studies with Re up to 1200, Remax = 1200. For other layers l ≥ 2, the input
tate ξ (l)

t is equal to the previous layer’s hidden state h(l−1)
t+∆t .

The residuals ∆w(t) = w(t + ∆t) − w(t), w(t) = [z(t),q(t)] and uncertainties σ∆w(t) are given by

∆w(t) = Wwh(L)
t+∆t + bw,

σ 2
∆w(t) = SoftPlusϵ(W′

σ CELU(Wσh(L)
t+∆t + bσ) + b′

σ),
(A.2)

here h(L) is the hidden state of the final layer L . Matrices Ww ∈ R(dz+dq)×dh , Ww ∈ Rdσ×dh and W′
σ ∈ R(dz+dq)×dσ ,

nd biases bw,b′
σ ∈ Rdz+dq and bσ ∈ Rdσ , with dσ = 100, are trainable parameters. Functions CELU(x) =

ax(0, x) + min(0, exp (x) − 1) and SoftPlusϵ(x) = log(1 + exp (x)) + ϵ, with ϵ = 10−6, are nonlinearities. The
arameters for σ∆w are trained separately from the rest, as explained in Section 2.3. Concretely, the parameters
σ , W′

σ , bσ and b′
σ constitute the trainable parameters θσ , whereas other parameters constitute θµ.

In the ensemble, each LSTM network, augmented with the additional layers for computing ∆w(t) and σ 2
∆w(t), is

rained separately with its own trainable parameters, starting from its own randomly initialized values. The networks
re trained using the Adam optimizer [86] with backpropagation through time [53] to minimize the trajectory sum
f per-state losses described in Section 2.3. Finally, in the VdP study, L = 3 layers with hidden state size of dh = 32
per layer) were used, amounting to 8176 trainable parameters in total. In the reaction–diffusion case study, L = 2
ayers with dh = 64 were used, amounting to 60 308 parameters (for dz = 8). In the CFD case study, L = 2 layers
ith dh = 32 were used, amounting to 20 944 parameters (for dz = 16).

ppendix B. Details of the van der pol oscillator case study

The Van der Pol oscillator enters a limit cycle given a fixed µ. The limit cycles for different values of µ are
hown in Fig. B.1.

The details of the three cases of µ(t) are as follows. In the µALT(t) case, µ alternates between values µ = 1 and
= 3 every 50 000 time steps. In the µRAND(t) case, µ changes between values 1.96, 1.23, 2.80, 2.34, 1.61, 2.57,

.49, 3.00, 1.69, and 1.00, at the same rate as µALT(t). Finally, the µBROWN(t) profile is computed by smoothing
RAND(t) and adding Brownian noise to it:

µBROWN(t) = µRAND(t) + α(µBROWN(t − ∆t) − µRAND(t)) + βϵ(t), ϵ(t) ∼ U([−1, 1]),
µBROWN(0) = µRAND(0),

(B.1)
ith α = exp (−∆t/200) ,∆t = 0.1 and β = 0.005.

20

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

o
u
b
m
s
a
t
p
H
µ

B

T
fi
m

Fig. B.1. The limit cycles of the Van der Pol oscillator.

Table B.1
Van der Pol oscillator hyper-parameter study and final parameters in bold. Percentages on the right
denote the highest achieved macro utilization.

Parameter Search space Comment

learning rate LogUniform(0.0002, 0.02) 0.002
batch size {8, 16, 32, 64}

LSTM hidden state size dh {8, 16, 32}

number of LSTM layers L {1, 2, 3, 4}

adversarial training? {no, yes} no significant effect
µ(t) as part of input? {no, yes} ∼54% vs ∼70%

B.1. Hyper-parameter study

The search space of hyper-parameters and their selected values are shown in Table B.1. The study was performed
n 1536 samples of hyper-parameter values, randomly selected in the listed ranges, optimizing for the total macro
tilization and average online validation error E . Each simulation was run for 200 000 time steps, with µ alternating
etween 1.5 and 2.5 every 25 000 time steps. Thresholds of Emax = 0.14 and σmax = 0.14 were used. The highest
acro utilization achieved was 70%. As the final hyper-parameter set (Table B.1), we selected a Pareto-optimal

ample that achieves 68% macro utilization and average online validation error E of 0.008. We further explored
dversarial training [55,87], but it did not affect the results noticeably. Moreover, we tested how significantly better
he network is with µ(t) as part of the input compared to not having access to µ(t). The results show that the macro
ropagator the acceptance rate and the total utilization are still high (∼54%) without providing µ(t) to the network.
owever, naturally, in that case, the uncertainty of the macro propagator’s prediction is insensitive to changes of
(t) during the macro-only stage.

.2. Dependence of error on thresholds and ensemble size

The testing error E can be decreased with a stricter uncertainty threshold σmax or with a larger ensemble size K .
o analyze the extent of their effect on E , we run the µALT(t) case for varying σmax and K . The threshold Emax is
xed to 0.1. The top plot in Fig. B.2 shows the distributions of mean cycle prediction errors Ec

max (the average over

acro-only steps of a cycle c) for varying σmax and K . We notice that, for sufficiently small σmax, the error drops

21

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

e
i
t
a

A

c

t

Fig. B.2. Dependence of the prediction error on the uncertainty threshold σmax (top) and the ensemble size K (bottom), in the Van der Pol
oscillator case study (Appendix B.2). Each violin plot represents one run and shows the distribution of mean macro-only prediction errors
along the AdaLED cycles.

approximately linearly with respect to σmax. This trend can be explained through dimensionality analysis. Namely,
E and σmax are quantities of the same units. The bottom plot of Fig. B.2 shows that E drops approximately as
1/

√
K , which is in accordance with the central limit theorem. Concretely, if we assume that each individual LSTM

produces the correct trajectory up to the noise of zero bias, then the noise cancels out at the rate of 1/
√

K .
It should be noted, however, that although stricter σmax improves error, it decreases macro utilization η. For

xample, for σmax = 0.1, 0.02 and 0.01, the macro utilization η is 60%, 29% and 18%, respectively. Likewise,
ncreasing the ensemble size from K = 5 to K = 20 reduces the error by ∼2×, but increases the total training
ime by 4×, assuming a fixed number of epochs. Thus, depending on the situation and objectives, decreasing σmax

nd increasing K may or may not be favorable.

ppendix C. Details of the reaction–diffusion study

The initial condition of the system is given by [59]

u(x, y, 0) = tanh
(√

x2 + y2 cos
(

atan2(y, x) −

√
x2 + y2

))
,

v(x, y, 0) = tanh
(√

x2 + y2 sin
(

atan2(y, x) −

√
x2 + y2

))
.

(C.1)

Eq. (10) is integrated in time using the fourth-order Runge–Kutta-Fehlberg integration scheme. A second-order
entered stencil with zero von Neumann boundary conditions is used for the diffusion term.

The capacity of the dataset is set to 1024 trajectories, each having 24 time steps. The hyper-parameters, including
he latent space dimension, RNN hidden state size, number of layers, batch size, learning rate, the amount of training
22

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
Table C.1
The architecture of the convolutional autoencoder for the reaction–diffusion case study. All
convolutional layers use padding_mode=replicate. Batch normalization layers use the default
parameters from PyTorch.

ID Shape Layer

2 × 96 × 96 Input

1 16 × 96 × 96 Conv(2, 16, kernel_size=5, padding=2)
1 16 × 96 × 96 BatchNorm()
2 16 × 48 × 48 AvgPool(kernel_size=2, stride=2)
3 16 × 48 × 48 CELU()
4 16 × 48 × 48 Conv(16, 16, kernel_size=5, padding=2)
1 16 × 48 × 48 BatchNorm()
5 16 × 24 × 24 AvgPool(kernel_size=2, stride=2)
6 16 × 24 × 24 CELU()
7 16 × 24 × 24 Conv(16, 16, kernel_size=5, padding=2)
1 16 × 24 × 24 BatchNorm()
8 16 × 12 × 12 AvgPool(kernel_size=2, stride=2)
9 16 × 12 × 12 CELU()
13 16 × 12 × 12 Conv(16, 16, kernel_size=5, padding=2)
14 16 × 6 × 6 AvgPool(kernel_size=2, stride=2)
15 16 × 6 × 6 CELU()
16 576 Flatten()
17 dz = 8 Linear()
18 dz = 8 Tanh()

dz = 8 z

1 576 Linear()
2 16 × 6 × 6 ViewLayer()
3 16 × 12 × 12 Upsample(scale_factor=2.0, mode=bilinear))
4 16 × 12 × 12 Conv(16, 16, kernel_size=3, padding=1)
1 16 × 12 × 12 BatchNorm()
8 16 × 12 × 12 CELU()
9 16 × 24 × 24 Upsample(scale_factor=2.0, mode=bilinear))
10 16 × 24 × 24 Conv(16, 16, kernel_size=5, padding=2)
1 16 × 24 × 24 BatchNorm()
11 16 × 24 × 24 CELU()
12 16 × 48 × 48 Upsample(scale_factor=2.0, mode=bilinear))
13 16 × 48 × 48 Conv(16, 16, kernel_size=5, padding=2)
1 16 × 48 × 48 BatchNorm()
14 16 × 48 × 48 CELU()
15 16 × 96 × 96 Upsample(scale_factor=2.0, mode=bilinear))
16 2 × 96 × 96 Conv(16, 2, kernel_size=5, padding=2)
17 2 × 96 × 96 Tanh()

50K total number of parameters

per AdaLED cycle, and the thresholds Emax and σmax are all hand-tuned. The autoencoder is composed of an encoder
and a decoder, each a 4-layer convolutional neural network with 16 channels per layer. The autoencoder architecture
is provided in Table C.1. The values (u, v), which span the range [−1, 1], are downscaled by a factor of 1.1 before
entering the encoder and upscaled back at the end of the decoder. A learning rate of 0.001 and a batch size of 64
are used for both the autoencoder and RNNs. The training is performed in partial epochs, with the autoencoder
trained on 6.25% of states in the dataset and the RNNs trained on 12.5% of stored trajectories after each AdaLED
cycle.
23

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

A

ω

t
a

i

ppendix D. Details of the flow behind the cylinder study

To trigger vortex shedding, we add a short symmetry-breaking vertical movement at the start of the simulation:

us
y(t) = e−αt sin (βt) us

y0, (D.1)

where α = 100, β = 200 and us
y0 = 0.05d.

The simulations were performed using CubismAMR [64], an adaptive mesh refinement (AMR) CPU–GPU hybrid
C++ code for solving the incompressible Naiver-Stokes equations. To use it within AdaLED and from Python,
we added Python bindings [88], APIs for controlling the execution of the simulation, and APIs for exporting and
importing the state. The existing coarse-fine AMR interpolation schemes were reused for exporting and importing
the state as a uniform grid.

The force Fcyl that the fluid exerts on the cylinder is given by the sum of the pressure and viscous forces and is
provided by CubismAMR:

Fcyl = Fp + Fv,

Fp =

‹
−pn dS ,

Fv = νρ

‹
(∇u + ∇u⊺) · n dS ,

(D.2)

where S is the surface of the cylinder, and n the outward normal vector.

D.1. Autoencoder for the CFD state

To achieve high speed-ups, the macro propagator is not operating on the high-dimensional micro state u ∈ Rdv ,
dv = 512 × 1024 × 2 ≈ 106 directly, but on a smaller low-dimensional latent state z ∈ Rdz , with dz ∼ 10. The
assumption is that this transition can indeed be performed: while we need high resolution to simulate the flow
dynamics accurately and to acquire accurate forces Fcyl, the actual dimensionality of the dynamics may be low.

To compress the velocity field u to the latent state z, we use an autoencoder based on convolutional neural
networks (CNNs). Instead of training the autoencoder to naively reproduce u by utilizing a simple (relative) MSE
of u, we take into account the characteristics of the fluid dynamical system: (i) physically essential quantities are also
the spatial derivatives of the velocity (see Eq. (12)) and the vorticity ω = (∇ × u)z , (ii) the flow is incompressible,
hence the divergence must be zero (∇ · u = 0), (iii) we assume that the flow far from the cylinder requires smaller
reconstruction accuracy compared to the flow around the cylinder.

If the autoencoder is trained only to minimize the MSE of u while ignoring the value of derivatives, the
reconstructed u would have high spatial noise, resulting in inaccurate local derivatives and locally high vorticity

= ωz = (∇ × u)z . This noisy vorticity would cause unnecessary mesh refinement in the CFD solver used in
his study [64], which uses adaptive non-uniform mesh and magnitude of local vorticity as the mesh refinement
nd coarsening criterion. We extend the loss function with a relative L1 vorticity reconstruction error to ensure

the reconstructed vorticity is low where it originally is low. This helps reduce the mesh size by about 10%–15%
compared to having no vorticity loss, and reduces the performance degradation that would partially cancel out the
benefit of AdaLED.

Non-zero divergence ∇ · u can be prevented entirely as a hard constraint by predicting the stream function ψ
nstead of the velocity field u [63]. The velocity field u is then given as:

ux =
∂ψ

∂y
, u y = −

∂ψ

∂x
. (D.3)

In its discretized form, the derivatives for computing u from ψ and ω from u are computed using the 2nd order
accurate centered stencil. For example, for a field f and a grid spacing of ∆x , the x-derivative is given as:

∂ f
∂x

⏐⏐⏐⏐
i j

=
fi, j+1 − fi, j−1

2∆x
+ O(∆x2). (D.4)

Thus, taking derivatives removes one cell from each side of each dimension. To account for that, ψ is predicted

with one cell of padding.

24

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

a
b
o
d
(

w

w
l

o
t
u

Finally, we want to prioritize reducing the reconstruction loss in the vicinity of the cylinder because this part
ffects the force Fcyl and because any error there will propagate to the rest of the flow. Moreover, the vortex street
ehind the cylinder is relatively smooth and does not require high resolution. We take advantage of these two
bservations and use a multiresolution autoencoder with two encoder–decoder pairs: One for the whole domain
ownsampled to half the resolution (u(1)), and one focusing on the subdomain around the cylinder at full resolution
u(2)). The two pairs operate independently and their compressed latent state z(k)

∈ Rd(k)
z are concatenated into the

final latent state z ∈ Rdz , dz = d (1)
z + d (2)

z . The details are explained in the following section.

D.2. Multiresolution autoencoders

When building an autoencoder for 2D (or 3D) arrays, in cases where different parts of the flow exhibit
different features and where not all parts require the same level of accuracy, we may benefit from combining
multiple autoencoders operating at different spatial resolutions into a single one. This enables us to reduce
memory requirements and improve computational efficiency and training accuracy (accuracy is positively affected
by improved processing speed and potentially from the benefits of a specialized architecture). This section describes
how such multiresolution autoencoders can be constructed. For simplicity, we focus on autoencoders reconstructing
a 2D scalar array φ ∈ RH×W using two encoder–decoder pairs. The method can be easily generalized to vector
arrays, to more than two encoder–decoder pairs, and higher-dimensional arrays.

For each encoder–decoder pair AEk , k ∈ {1, 2}, we define a downsampling operation D(k)
: RH×W

→ RH (k)
×W (k)

that converts the full-resolution array φ into a smaller array φ(k)
= D(k)(φ) that AEk will operate on. In this case

study, AE1 is used to reconstruct the whole domain at half the resolution (H (1)
= H/2,W (1)

= W/2), whereas AE2
is used for the detailed part of some size H (2)

× W (2) around the cylinder. Functions D(1) and D(2) are thus given
as:

D(1)
i j (φ) =

1
4

(
φ2i,2 j + φ2i,2 j+1 + φ2i+1,2 j + φ2i+1,2 j+1

)
, 0 ≤ i < H (1), 0 ≤ j < W (1)

D(2)
i j (φ) = φi0+i, j0+ j , 0 ≤ i < H (2), 0 ≤ j < W (2)

(D.5)

here i0 and j0 are offsets of φ(2) with respect to φ (indexing is 0-based).
The total reconstruction loss is defined as a weighted sum of the reconstruction losses of each individual AEk :

ℓ(φ̃,φ) = w(1)ℓ(1)(φ̃
(1)
,φ(1)) + w(2)ℓ(2)(φ̃

(2)
,φ(2)), (D.6)

here w(k) are weight factors. Since the AEks are independent, the weights w(k) effectively determine the relative
earning rate between them. For simplicity, we take w(1)

= w(2)
= 1.

The individual losses l (k) take into consideration that we do not want to waste the limited expressiveness of AE1
n reconstructing the part that AE2 is already focusing on. Furthermore, to reduce the boundary effects (at which
he reconstruction might be poor), we also want to exclude the edges from the reconstruction loss of AE2. We, thus,
se weighted (relative) reconstruction losses:

ℓ(k)
(
φ̃

(k)
,φ(k)

)
=

∑
i j α

(k)
i j

(
φ̃

(k)
i j − φ

(k)
i j

)2

∑
i j α

(k)
i j

(
φ

(k)
i j

)2
+ W (k) H (k)ϵφ

for the relative MSE loss, or

ℓ(k)
(
φ̃

(k)
,φ(k)

)
=

∑
i j α

(k)
i j

⏐⏐⏐φ̃(k)
i j − φ

(k)
i j

⏐⏐⏐∑
i j α

(k)
i j

⏐⏐⏐φ(k)
i j

⏐⏐⏐ + W (k) H (k)ϵφ

for the relative L1 loss. Here, field φ̃
(k)

denotes the autoencoder reconstruction, φ(k) the input and the target, and
ϵφ > 0 a normalization offset for preventing diverging gradients. The weight factors α(k) are selected such that the
center of the cylinder does not affect the loss of AE1 and that the edge of the second subdomain does not affect
the loss of AE2:

α(1)
= 1 − D(1)(S(d (1))),

(2) (2) (2) (D.7)

α = D (S(d)),

25

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

o

w

Fig. D.1. The geometry of the multiresolution autoencoder with resolution of AE2 equal to 224 × 224. The solid inner box represents the
subdomain that AE2 operates on, the dashed line the distance dr

= 22 from the inner subdomain boundary (where β(1)
= β(2)

= 0.5).
Colors represent the blending contributions (β(1) > 0.5 marked as blue, β(2) > 0.5 with orange), and circle the cylinder. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

here S : R → RH×W is a 2D smoothed rectangular function:

Si j (d) = S
(

min{i ′
− i0, i1 − i ′

} − d
s

)
× S

(
min{ j ′

− j0, j1 − j ′
} − d

s

)
,

i ′
= i +

1
2
, (for cell-centered values)

j ′
= j +

1
2
,

S(x) =
1

1 + e−x
, (sigmoid)

(D.8)

where (i0, j0) and (i1, j1) = (i0 + H (2), j0 + W (2)) are the start and the end bounds of AE2. Parameter s > 0 is a
smoothing factor, and d (1), d (2) > 0 the spatial margins.

The final reconstruction of φ ∈ RH×W from φ(1) and φ(2) is as well done in a weighted manner:

φ = β (1)
⊙ U(φ(1)) + β (2)

⊙ U(φ(2)),

β (1)
= 1 − S(dr)

β (2)
= S(dr)

(D.9)

where U(k)
: RH (k)

×W (k)
→ RH×W are upsampling operations, dr the reconstruction margin, and operator ⊙ the

element-wise multiplication. In this case study, U(1) is the upsampling operation with bilinear interpolation and U(2)

is a zero-padding operation.
We tested two variants of AE2 that operate on different resolutions: 256 × 256 and 224 × 224. As shown in

Section 5.1.3, the latter variant exhibited slightly better performance for large macro utilizations and was selected
as part of the reference parameter set. The parameters are shown in Table D.1, and the geometry is visualized in
Fig. D.1. By using margins d (1) > dr > d (2), we ensure that both AE1 and AE2 accurately reconstruct the part
where the smoothed blending occurs (0 < β

(k)
i j < 1).

The multiresolution approach decreases the memory and storage requirements by 2.9× (for the 224 × 224
variant) and accelerates the training by approximately the same factor at a small cost of accuracy degradation.
Concretely, the relative mean square error between the original velocity field u and the downsampled–upsampled

′ ′ 2 2 −6
u is ∥u − u∥2/∥u∥2 ≈ 10 .

26

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

v
t
T
o
r

w

Table D.1
Geometry and loss function parameters for multiresolution autoencoders, and memory
usage per single u field in single precision.

Parameter Variant 1 Variant 2

original resolution 1024 × 512
AE1 resolution 512 × 256
AE2 resolution 256 × 256 224 × 224
AE2 begin (77, 128) (93, 144)
AE2 end (333, 384) (317, 368)
weight w(1) 1.0
weight w(2) 1.0
margin d (1) 30.0
margin dr 22.0
margin d (2) 14.0
smoothing s 3.0

original size of u 4.00 MB
reduced size of u 1.50 MB 1.38 MB

D.3. Autoencoder summary and loss function

The discussion above is summarized in the following. The state u is stored in the dataset in two downsampled
ersions u(1) and u(2), each handled by its own encoder–decoder pair AEk . For each AEk , k ∈ {1, 2}, the encoder k
akes the downsampled velocity field u(k)

∈ RH (k)
×W (k)

×2 as input and compresses it into a latent state z(k)
∈ Rd(k)

z .
he decoder k takes the latent state z(k) and decompresses it into the scalar field ψ̃ (k) (with one cell of padding
n each side of each dimension). Then, the reconstructed velocity ũ(k) is computed from ψ̃ (k) using Eq. (D.3). The
econstruction loss of AEk is defined as a weighted sum of the relative MSE loss of u(k) and the relative L1 loss

of vorticity ω(k) (notation (k) omitted in the following for brevity):

ℓ(k)(ũ,u) = λu

∑
i j αi j (ũi j − ui j)2∑

i j αi j u2
i j + W (k) H (k)ϵu

+ λω

∑
i j α

′

i j∥ω̃i j − ωi j∥1∑
i j α

′

i j∥ωi j∥1 + (W (k) − 2)(H (k) − 2)ϵω
, (D.10)

ω̃ = (∇ × ũ)z, ω = (∇ × u)z,

α′
= α1..H−2;1..W−2 ∈ R(H−2)×(W−2), (D.11)

where λu = 1 and λω = 0.03 are the weight factors, and ϵu = 0.01 and ϵω = 0.7 the normalization offsets used to
avoid exploding gradients when training on initial states where u ≈ 0. The effect of λω is visualized in Fig. D.2.
Numbers ϵu and ϵω were selected to match ≈25% of the mean (u(1)

i j)2 and the mean
⏐⏐⏐ω(1)

i j

⏐⏐⏐, respectively, for the
developed flow at Re = 500. The total loss ℓ(. . .) is defined as the weighted sum of the losses of AEks:

ℓ(ũ(1), ũ(2),u(1),u(2)) = w(1)ℓ(1)(ũ(1),u(1)) + w(2)ℓ(2)(ũ(2),u(2)), (D.12)

here w(1)
= w(2)

= 1 are relative weights between AEks. Either when computing the online validation error
E in Eq. (13) or when performing macro-to-micro transition, the full resolution velocity u is reconstructed by
merging u(1) and u(2) as described in Eq. (D.9). The merging must be performed on velocities u and not on the
stream function ψ . This is because the stream functions are defined up to an unspecified additive constant, making
their merging impossible. Furthermore, by smoothly blending between two upscaled velocity fields (Eq. (D.9)), we
ensure the spatial derivatives of u are smooth.

D.4. Hyper-parameters, the CNN architecture and training

Apart from the hyper-parameters listed in the autoencoder study in Section 5.1.2, other parameters, such as the
batch size, were hand-tuned and are listed in Table D.2.
27

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

u
t

t
t
t

D

c
t
u
o

Fig. D.2. Reconstructed vorticity field (A and B) and its absolute error (C and D) for the AE2, for λω = 0 (without vorticity loss, A and
C) and λω = 0.03 (with vorticity loss, B and D).

Fig. D.3. Fraction of the execution time of stages of the training in the flow behind the cylinder case.

Table D.2
Hand-tuned network hyper-parameters for the flow be-
hind the cylinder study. Other parameters are listed in
Section 5.1.3.

Hyper-parameter Value

autoencoder batch size 8
LSTM batch size 8
LSTM hidden state size 32
number of LSTM layers 2
single vs double precision single

The basis of the u autoencoder are two convolutional autoencoders, each operating on one downsampled array
(k). The two autoencoders share the same architecture but are trained separately. Their final CNN architecture after

he hyper-parameter study is shown in Table D.3.
The training is performed continuously in parallel with the simulation and AdaLED inference. In each epoch,

he networks are trained on 12.5% of the dataset. An epoch consists of training the autoencoder, encoding the states
o build a temporary dataset for LSTMs, and finally, training the LSTMs. The relative execution time of the three
raining stages is shown in Fig. D.3.

.5. Latent trajectory

A section of the macro trajectory from the simulation from Section 5.1.1 is shown in Fig. D.4. The first 16 lines
orrespond to the latent states z(t) and the last two to the force Fcyl(t) (scaled with a factor of αF = 7.2). The
otal uncertainty σ is defined as the root square mean of all 18 uncertainties. It can be seen that the majority of the
ncertainty comes from low-amplitude latent variables. The possibility of using weighted uncertainties, depending
n the importance of each variable, is a topic of future research.
28

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204

s

Table D.3
The architecture of the convolutional autoencoders for the flow behind the cylinder case study. All convolutional
layers use padding_mode=replicate.

ID AE #1 shape AE #2 shape Layer

2 × 256 × 512 2 × 224 × 224 Input

1 16 × 256 × 512 16 × 224 × 224 Conv(2, 16, kernel_size=5, padding=2)
2 16 × 128 × 256 16 × 112 × 112 AvgPool(kernel_size=2, stride=2)
3 16 × 128 × 256 16 × 112 × 112 CELU()
4 16 × 128 × 256 16 × 112 × 112 Conv(16, 16, kernel_size=5, padding=2)
5 16 × 64 × 128 16 × 56 × 56 AvgPool(kernel_size=2, stride=2)
6 16 × 64 × 128 16 × 56 × 56 CELU()
7 16 × 64 × 128 16 × 56 × 56 Conv(16, 16, kernel_size=5, padding=2)
8 16 × 32 × 64 16 × 28 × 28 AvgPool(kernel_size=2, stride=2)
9 16 × 32 × 64 16 × 28 × 28 CELU()
13 16 × 32 × 64 16 × 28 × 28 Conv(16, 16, kernel_size=3, padding=1)
14 16 × 16 × 32 16 × 14 × 14 AvgPool(kernel_size=2, stride=2)
15 16 × 16 × 32 16 × 14 × 14 CELU()
16 8192 3136 Flatten()
17 d (1)

z = 8 d (2)
z = 8 Linear()

18 d (1)
z = 8 d (2)

z = 8 Tanh()

d (1)
z = 8 d (2)

z = 8 z(i)

1 8192 3136 Linear()
2 16 × 16 × 32 16 × 14 × 14 ViewLayer()
3 16 × 32 × 64 16 × 28 × 28 Upsample(scale_factor=2.0, mode=bilinear))
4 16 × 32 × 64 16 × 28 × 28 Conv(16, 16, kernel_size=3, padding=1)
8 16 × 32 × 64 16 × 28 × 28 CELU()
9 16 × 64 × 128 16 × 56 × 56 Upsample(scale_factor=2.0, mode=bilinear))
10 16 × 64 × 128 16 × 56 × 56 Conv(16, 16, kernel_size=5, padding=2)
11 16 × 64 × 128 16 × 56 × 56 CELU()
12 16 × 128 × 256 16 × 112 × 112 Upsample(scale_factor=2.0, mode=bilinear))
13 16 × 128 × 256 16 × 112 × 112 Conv(16, 16, kernel_size=5, padding=2)
14 16 × 128 × 256 16 × 112 × 112 CELU()
15 16 × 256 × 512 16 × 224 × 224 Upsample(scale_factor=2.0, mode=bilinear))
16 1 × 258 × 514 1 × 224 × 224 Conv(16, 1, kernel_size=5, padding=3)
17 2 × 256 × 512 2 × 224 × 224 StreamFnToVelocity() (Eq. (D.3))

171K 85K total number of parameters

D.6. Generalization to other Reynolds number profiles

The hyper-parameters and thresholds used in simulations reported in Section 5.1.1 were fine-tuned for that
pecific Reynolds number profile of cycling between Re = 600, 750 and 900, updated every 5000 time steps,

as described in Section 5.1.3 (the hyper-parameter study used shorter simulations than the production runs). To
test the generalization of hyper-parameters and thresholds to another Reynolds number profile, we simulate with
Reynolds number alternating between 500 and 1000 every 10 000 time steps. The macro utilization η, velocity field
error E , and the cylinder force error EF are shown in Fig. D.5. Compared to the macro utilization of η = 69%
(speed-up of 2.9×) in Section 5.1.1, here, the achieved utilization is 58% (speed-up of 2.1×). As before, the average
velocity and cylinder force errors E and EF are 1% and 5%. In this case, changing the setup resulted in smaller
speed-ups. Thus, to achieve optimal performance, the hyper-parameters (particularly learning rates and thresholds)

may have to be additionally fine-tuned if the simulation setup is updated.

29

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
Fig. D.4. The trajectory z(t) and αF Fcyl(t) from the simulation from Section 5.1.1, as predicted by the ensemble. The solid line represents the
ensemble mean prediction, and the faded region is the prediction uncertainty (the ensemble’s standard deviation). For clarity, the uncertainties
are enhanced by 8×. The numbers range between approx. −0.5 and 0.5. See Appendix D.5.

Fig. D.5. AdaLED performance on a flow behind cylinder simulation for Re(t) ∈ {500, 1000}, analogous to Fig. 9. Top: Reynolds number
Re(t) profile and the macro utilization η. Middle and bottom: validation errors of the velocity (E , Eq. (13)) and force on the cylinder (EF ,
Eq. (14)). The per-step errors (faded red) alternate between low values at the beginning of the macro-only stage and higher errors at the
end of the macro-only stage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

References

[1] F. Lateef, Simulation-based learning: Just like the real thing, J. Emerg. Trauma Shock 3 (4) (2010) 348.
[2] V. Springel, S.D. White, A. Jenkins, C.S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, et al., Simulations

of the formation, evolution and clustering of galaxies and quasars, Nature 435 (7042) (2005) 629–636.
30

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
[3] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, et al.,
Exascale deep learning for climate analytics, in: SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, 2018, pp. 649–660.

[4] O. Ghattas, K. Willcox, Learning physics-based models from data: perspectives from inverse problems and model reduction, Acta
Numer. 30 (2021) 445–554, http://dx.doi.org/10.1017/S0962492921000064.

[5] W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, C. Miao, Multi-objective parameter optimization of common land model
using adaptive surrogate modeling, Hydrol. Earth Syst. Sci. 19 (5) (2015) 2409–2425.

[6] S. Verma, G. Novati, P. Koumoutsakos, Efficient collective swimming by harnessing vortices through deep reinforcement learning,
Proc. Natl. Acad. Sci. 115 (23) (2018) 5849–5854.

[7] G. Novati, H.L. de Laroussilhe, P. Koumoutsakos, Automating turbulence modelling by multi-agent reinforcement learning, Nat. Mach.
Intell. 3 (1) (2021) 87–96.

[8] S.S. Du, S.M. Kakade, R. Wang, L.F. Yang, Is a good representation sufficient for sample efficient reinforcement learning? 2019, arXiv
preprint arXiv:1910.03016.

[9] M. Taufer, E. Deelman, R.F.d. Silva, T. Estrada, M. Hall, M. Livny, A roadmap to robust science for high-throughput applications:
The developers’ perspective, in: 2021 IEEE International Conference on Cluster Computing, CLUSTER, 2021, pp. 807–808, http:
//dx.doi.org/10.1109/Cluster48925.2021.00068.

[10] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C. Theodoropoulos, et al., Equation-free, coarse-grained
multiscale computation: enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci. 1 (4) (2003) 715–762.

[11] C.R. Laing, T. Frewen, I.G. Kevrekidis, Reduced models for binocular rivalry, J. Comput. Neurosci. 28 (3) (2010) 459–476.
[12] Y. Bar-Sinai, S. Hoyer, J. Hickey, M.P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad.

Sci. 116 (31) (2019) 15344–15349.
[13] E. Weinan, B. Engquist, et al., The heterognous multiscale methods, Commun. Math. Sci. 1 (1) (2003) 87–132.
[14] E. Weinan, B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Heterogeneous multiscale methods: a review, Commun. Comput. Phys. 2

(3) (2007) 367–450.
[15] M. Tao, H. Owhadi, J.E. Marsden, Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian

systems with hidden slow dynamics via flow averaging, Multiscale Model. Simul. 8 (4) (2010) 1269–1324.
[16] J.N. Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems,

SIAM, 2016.
[17] R.R. Coifman, S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (1) (2006) 5–30.
[18] P.R. Vlachas, J. Pathak, B.R. Hunt, T.P. Sapsis, M. Girvan, E. Ott, P. Koumoutsakos, Backpropagation algorithms and reservoir

computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics, Neural Netw. 126 (2020) 191–217.
[19] P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P. Sapsis, P. Koumoutsakos, Data-driven forecasting of high-dimensional chaotic systems with

long short-term memory networks, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 474 (2213) (2018) 20170844.
[20] Z.Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, Data-assisted reduced-order modeling of extreme events in complex dynamical

systems, PLoS One 13 (5) (2018) e0197704.
[21] S. Brunton, B. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, 2019, arXiv preprint arXiv:1905.11075.
[22] R. Vinuesa, S.L. Brunton, Enhancing computational fluid dynamics with machine learning, Nat. Comput. Sci. 2 (6) (2022) 358–366.
[23] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning–accelerated computational fluid dynamics,

Proc. Natl. Acad. Sci. 118 (21) (2021) e2101784118.
[24] P.R. Vlachas, G. Arampatzis, C. Uhler, P. Koumoutsakos, Multiscale simulations of complex systems by learning their effective

dynamics, Nat. Mach. Intell. 4 (4) (2022) 359–366.
[25] P.R. Vlachas, Learning and Forecasting the Effective Dynamics of Complex Systems Across Scales (Ph.D. thesis), ETH Zurich, 2022.
[26] P.R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos, Accelerated simulations of molecular systems through learning of effective

dynamics, J. Chem. Theory Comput. 18 (1) (2021) 538–549.
[27] T. Wu, T. Maruyama, J. Leskovec, Learning to accelerate partial differential equations via latent global evolution, 2022, arXiv preprint

arXiv:2206.07681.
[28] S. Wiewel, M. Becher, N. Thuerey, Latent space physics: Towards learning the temporal evolution of fluid flow, in: Computer Graphics

Forum, Vol. 38, No. 2, Wiley Online Library, 2019, pp. 71–82.
[29] F.J. Gonzalez, M. Balajewicz, Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems,

2018, arXiv preprint arXiv:1808.01346.
[30] K. Fukami, K. Hasegawa, T. Nakamura, M. Morimoto, K. Fukagata, Model order reduction with neural networks: Application to

laminar and turbulent flows, SN Comput. Sci. 2 (6) (2021) 1–16.
[31] K. Stachenfeld, D.B. Fielding, D. Kochkov, M. Cranmer, T. Pfaff, J. Godwin, C. Cui, S. Ho, P. Battaglia, A. Sanchez-Gonzalez,

Learned coarse models for efficient turbulence simulation, 2021, arXiv preprint arXiv:2112.15275.
[32] N. Geneva, N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks, J. Comput.

Phys. 403 (2020) 109056.
[33] R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and

convolutional autoencoders, Phys. Fluids 33 (3) (2021) 037106.
[34] K. Hasegawa, K. Fukami, T. Murata, K. Fukagata, Machine-learning-based reduced-order modeling for unsteady flows around bluff

bodies of various shapes, Theor. Comput. Fluid Dyn. 34 (4) (2020) 367–383.
[35] P. Pant, R. Doshi, P. Bahl, A. Barati Farimani, Deep learning for reduced order modelling and efficient temporal evolution of fluid
simulations, Phys. Fluids 33 (10) (2021) 107101.

31

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
[36] H. Eivazi, H. Veisi, M.H. Naderi, V. Esfahanian, Deep neural networks for nonlinear model order reduction of unsteady flows, Phys.
Fluids 32 (10) (2020) 105104.

[37] X. Zhang, T. Ji, F. Xie, H. Zheng, Y. Zheng, Unsteady flow prediction from sparse measurements by compressed sensing reduced
order modeling, Comput. Methods Appl. Mech. Engrg. 393 (2022) 114800.

[38] T. Simpson, N. Dervilis, E. Chatzi, Machine learning approach to model order reduction of nonlinear systems via autoencoder and
LSTM networks, 2021, arXiv preprint arXiv:2109.11213.

[39] P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, C.C. Pain, Data-driven reduced order model with temporal convolutional
neural network, Comput. Methods Appl. Mech. Engrg. 360 (2020) 112766.

[40] S. Fresca, A. Manzoni, POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by
proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg. 388 (2022) 114181.

[41] B. Peherstorfer, K. Willcox, Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl.
Mech. Engrg. 306 (2016) 196–215.

[42] P. Benner, M. Ohlberger, A. Cohen, K. Willcox, Model Reduction and Approximation: Theory and Algorithms, SIAM, 2017.
[43] D. Galbally, K. Fidkowski, K. Willcox, O. Ghattas, Non-linear model reduction for uncertainty quantification in large-scale inverse

problems, Internat. J. Numer. Methods Engrg. 81 (12) (2010) 1581–1608.
[44] K. Vlachas, K. Tatsis, K. Agathos, A.R. Brink, E. Chatzi, A local basis approximation approach for nonlinear parametric model order

reduction, J. Sound Vib. 502 (2021) 116055.
[45] K. Vlachas, K. Tatsis, K. Agathos, A.R. Brink, D. Quinn, E. Chatzi, Parametric model order reduction for localized nonlinear feature

inclusion, in: Advances in Nonlinear Dynamics, Springer, 2022, pp. 373–383.
[46] W.D. Fries, X. He, Y. Choi, LaSDI: Parametric latent space dynamics identification, Comput. Methods Appl. Mech. Engrg. 399 (2022)

115436.
[47] X. He, Y. Choi, W.D. Fries, J. Belof, J.-S. Chen, gLaSDI: Parametric physics-informed greedy latent space dynamics identification,

2022, arXiv preprint arXiv:2204.12005.
[48] B. Peherstorfer, K. Willcox, Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Engrg. 291 (2015) 21–41.
[49] B. Peherstorfer, K. Willcox, Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput. 37

(4) (2015) A2123–A2150.
[50] H. Zhang, C.W. Rowley, E.A. Deem, L.N. Cattafesta, Online dynamic mode decomposition for time-varying systems, SIAM J. Appl.

Dyn. Syst. 18 (3) (2019) 1586–1609.
[51] M.S. Hemati, M.O. Williams, C.W. Rowley, Dynamic mode decomposition for large and streaming datasets, Phys. Fluids 26 (11)

(2014) 111701.
[52] Q. Wang, O. Fink, L. Van Gool, D. Dai, Continual test-time domain adaptation, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 7201–7211.
[53] P.J. Werbos, Generalization of backpropagation with application to a recurrent gas market model, Neural Netw. 1 (4) (1988) 339–356.
[54] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,

et al., Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. 114 (13) (2017) 3521–3526.
[55] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, 2016, arXiv

preprint arXiv:1612.01474.
[56] D.A. Nix, A.S. Weigend, Estimating the mean and variance of the target probability distribution, in: Proceedings of 1994 Ieee

International Conference on Neural Networks, Vol. 1, ICNN’94, IEEE, 1994, pp. 55–60.
[57] B. Van der Pol, On “relaxation-oscillations”, Lond. Edinb. Dublin Philos. Mag. J. Sci. 2 (11) (1926) 978–992.
[58] D. Kaplan, L. Glass, Understanding Nonlinear Dynamics, Springer Science & Business Media, 1997, pp. 240–244.
[59] K. Champion, B. Lusch, J.N. Kutz, S.L. Brunton, Data-driven discovery of coordinates and governing equations, Proc. Natl. Acad.

Sci. 116 (45) (2019) 22445–22451.
[60] D. Floryan, M.D. Graham, Data-driven discovery of intrinsic dynamics, Nat. Mach. Intell. 4 (12) (2022) 1113–1120.
[61] P. Angot, C.-H. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numer.

Math. 81 (4) (1999) 497–520.
[62] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (104) (1968) 745–762.
[63] A.T. Mohan, N. Lubbers, D. Livescu, M. Chertkov, Embedding hard physical constraints in neural network coarse-graining of 3D

turbulence, 2020, arXiv preprint arXiv:2002.00021.
[64] M. Chatzimanolakis, P. Weber, P. Koumoutsakos, CubismAMR – a C++ library for distributed block-structured adaptive mesh refinement,

2022, arXiv preprint arXiv:2206.07345.
[65] M. Chatzimanolakis, P. Weber, P. Koumoutsakos, Vortex separation cascades in simulations of the planar flow past an impulsively

started cylinder up to, J. Fluid Mech. 953 (2022) R2.
[66] A. Rasheed, O. San, T. Kvamsdal, Digital twin: Values, challenges and enablers from a modeling perspective, IEEE Access 8 (2020)

21980–22012.
[67] M.G. Kapteyn, J.V. Pretorius, K.E. Willcox, A probabilistic graphical model foundation for enabling predictive digital twins at scale,

Nat. Comput. Sci. 1 (5) (2021) 337–347.
[68] R. Vinuesa, S.L. Brunton, B.J. McKeon, The transformative potential of machine learning for experiments in fluid mechanics, 2023,

arXiv preprint arXiv:2303.15832.
[69] D.P. Kingma, M. Welling, Auto-encoding variational bayes, 2013, arXiv preprint arXiv:1312.6114.
[70] L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, X. Alameda-Pineda, Dynamical variational autoencoders: A comprehensive review,
2020, arXiv preprint arXiv:2008.12595.

32

I. Kičić, P.R. Vlachas, G. Arampatzis et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116204
[71] C.E. Heaney, Y. Li, O.K. Matar, C.C. Pain, Applying convolutional neural networks to data on unstructured meshes with space-filling
curves, 2020, arXiv preprint arXiv:2011.14820.

[72] G. Riegler, A. Osman Ulusoy, A. Geiger, Octnet: Learning deep 3D representations at high resolutions, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 3577–3586.

[73] M. Tatarchenko, A. Dosovitskiy, T. Brox, Octree generating networks: Efficient convolutional architectures for high-resolution 3D
outputs, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2088–2096.

[74] K. Fukami, T. Nakamura, K. Fukagata, Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition
of fluid field data, Phys. Fluids 32 (9) (2020) 095110.

[75] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional LSTM network: A machine learning approach for
precipitation nowcasting, Adv. Neural Inf. Process. Syst. 28 (2015).

[76] Y. Liu, J.N. Kutz, S.L. Brunton, Hierarchical deep learning of multiscale differential equation time-steppers, Phil. Trans. R. Soc. A
380 (2229) (2022) 20210200.

[77] S. Pawar, S. Rahman, H. Vaddireddy, O. San, A. Rasheed, P. Vedula, A deep learning enabler for nonintrusive reduced order modeling
of fluid flows, Phys. Fluids 31 (8) (2019) 085101.

[78] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, Adv.
Neural Inf. Process. Syst. 34 (2021) 22419–22430.

[79] T.M. Moerland, J. Broekens, C.M. Jonker, Model-based reinforcement learning: A survey, 2020, arXiv preprint arXiv:2006.16712.
[80] A. de Mathelin, F. Deheeger, M. Mougeot, N. Vayatis, Deep anti-regularized ensembles provide reliable out-of-distribution uncertainty

quantification, 2023, arXiv preprint arXiv:2304.04042.
[81] M. Valdenegro-Toro, D.S. Mori, A deeper look into aleatoric and epistemic uncertainty disentanglement, in: 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops, CVPRW, IEEE, 2022, pp. 1508–1516.
[82] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Adv. Neural

Inf. Process. Syst. 30 (2017).
[83] J. Nixon, B. Lakshminarayanan, D. Tran, Why are bootstrapped deep ensembles not better? in: ”I Can’t Believe It’s Not Better!”NeurIPS

2020 Workshop, 2020.
[84] R. Egele, R. Maulik, K. Raghavan, B. Lusch, I. Guyon, P. Balaprakash, Autodeuq: Automated deep ensemble with uncertainty

quantification, in: 2022 26th International Conference on Pattern Recognition, ICPR, IEEE, 2022, pp. 1908–1914.
[85] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780.
[86] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[87] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, 2014, arXiv preprint arXiv:1412.6572.
[88] W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – seamless operability between C++11 and Python, 2017, https://github.com/pybind/

pybind11.
33

