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Abstract

Dynamical systems play a key role in modeling, forecasting, and decision-making across a wide range of scientific
domains. However, variations in system parameters, also referred to as parametric variability, can lead to drastically
different model behavior and output, posing challenges for constructing models that generalize across parameter
regimes. In this work, we introduce the Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet), a
framework that simultaneously learns: (a) a global mapping from the parameter space to a nonlinear embedding and
(b) a mapping from the inferred embedding to the weights of a dynamics propagation network. The learned embedding
serves as a latent representation that modulates a base network, termed the hypernetwork, enabling it to generate the
weights of a target network responsible for forecasting the system’s state evolution conditioned on the previous time
history. By interpolating in the space of models rather than observations, PHLieNet facilitates smooth transitions
across parameterized system behaviors, enabling a unified model that captures the dynamic behavior across a broad
range of system parameterizations. The performance of the proposed technique is validated in a series of dynamical
systems with respect to its ability to extrapolate in time and interpolate and extrapolate in the parameter space, i.e.,
generalize to dynamics that were unseen during training. In all cases, our approach outperforms or matches state-of-
the-art baselines in both short-term forecast accuracy and in capturing long-term dynamical features, such as attractor
statistics.
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1. Introduction

Accurate modeling and inference of the behavior of complex dynamical systems is essential for understanding,
predicting, and controlling real-world phenomena across disciplines, including physics [1], biology [2], and neuro-
science [3]. Applications span tasks related to weather modeling and forecasting [4, 5], extreme event prediction [6],
fluid dynamics [7], financial markets modeling [8], the spread of diseases [9], and the operation of engineered sys-
tems [10]. While recent work in data-driven modeling has advanced our ability to learn the governing dynamics of
complex systems, typically represented by ordinary and partial differential equations (ODEs and PDEs), most ap-
proaches focus mainly on capturing variations due to the influence of initial conditions [11, 12]. Yet, an equally
critical aspect influencing dynamic response is parametric variability, which arises from changes in intrinsic system
properties or external excitation characteristics [13]. Examples include the influence of the Reynolds number on flow
regime transitions in fluid dynamics [14], and the role of carbon dioxide levels or solar radiation in shaping long-term
climate trends [15]. These examples underscore the ubiquity of parametric systems, where dynamics are governed not
only by initial conditions but also by smoothly or abruptly varying parameters.

Traditional physics-based approaches for modeling and forecasting complex dynamical systems of parametric
nature rely on the derivation of mathematical models based on first principles, that is, established physical laws [16].
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To enable efficient simulation of parametric dynamical systems, the corresponding frameworks often employ model
reduction techniques that approximate the full-order dynamics. These include projection-based methods [17, 18, 19],
which construct reduced-order models via subspace projections (e.g., POD-Galerkin), as well as decomposition-based
strategies [20, 21, 22]. In addition, meshless and interpolation-based approaches, including radial basis function
methods and tensor decomposition techniques like Proper Generalized Decomposition (PGD), are also widely used,
particularly when aiming to represent solution manifolds across a broad parameter space [16, 23, 21]. However, such
strategies often face limitations when applied in chaotic or strongly nonlinear systems, particularly those exhibiting
intricate interactions or multiple parametric dependencies. In addition, capturing and propagating the dynamics in
many real-world applications requires resolving a wide range of scales, rendering the application of equation-based
models computationally expensive or even intractable.

Despite recent advances in enhancing physics-based frameworks through scientific machine learning techniques
[24, 25, 26], many modeling challenges persist, particularly in capturing complex dynamical systems characterized
by strong nonlinearity, multiscale behavior, and parametric variability. In this context, hybrid approaches that in-
tegrate data with governing equations [27, 28] have gained traction for their ability to combine the expressiveness
of data-driven models with the interpretability and structure of physical laws [23]. Among these, Physics-Informed
Neural Networks (PINNs)[29, 30, 31] and their meta-learning extensions, such as Meta-PDE[32], HyperPINN [33],
and Meta-Auto-Decoder frameworks [34]—represent prominent efforts to encode the PDE structure directly into the
learning process. More recently, diffusion-based generative models have also been proposed as a means of incorpo-
rating physics-driven constraints into probabilistic modeling [35].

These techniques typically embed physical constraints, governing equations, or inductive biases tailored to spe-
cific PDEs, thereby enhancing model generalization and interpretability [36, 37]. However, they often rely on explicit
knowledge of the underlying dynamics or the availability of the Jacobian, and may require intrusive access to integra-
tion schemes during training. As a result, their applicability can be limited in large-scale, high-dimensional systems,
or in settings involving complex boundary conditions and broad parametric variability [38, 39, 40]. These scalability
and mesh-dependency issues motivate the search for more flexible, non-intrusive alternatives capable of generalizing
across diverse system configurations.

Parallel to hybrid methods, purely data-driven approaches have also been explored for modeling dynamical sys-
tems, particularly in the context of autoregressive time-series modeling. Classical architectures such as Reservoir
Computers [41, 42, 43], Recurrent Neural Networks (RNNs) including Long Short-Term Memory (LSTM) net-
works [44] and Gated Recurrent Units (GRUs) [45, 46, 47, 48], and Transformers [49] are commonly employed
for modeling dynamical systems. Furthermore, DeepONets [50], Neural Operators (NOs), including Fourier Neural
Operators [51, 52], spectral NOs [53], and convolutional NOs [54, 55] offer a functional perspective by learning map-
pings between infinite-dimensional function spaces, thereby enabling efficient modeling of high-dimensional PDE
systems. Similarly, neural ordinary differential equations (neural ODEs) [56, 57, 58] extend neural architectures to
continuous-time domains by parameterizing the underlying dynamics through differentiable solvers.

Despite their promise, most data-driven methods train a single forecasting model per parametrization and struggle
to generalize across unseen system parameters. As a result, the developed frameworks often struggle to generalize or
extrapolate reliably across unseen dynamical regimes. Recent works in deep learning for parametric PDEs [59, 60, 61],
PINNs [62], Neural ODEs [63], and Echo State Networks (ESNs) [64, 65, 66] also identify this gap and attempt to
address it by stacking vector embeddings that combine state and parameter information [61] or by directly augment-
ing the state with the parameter, following earlier practices [65]. However, these methods still rely on shared model
weights across all parameter configurations, which limits expressiveness and generalization when dynamics vary sig-
nificantly across parameter space. We argue that this pitfall might evolve to a limiting factor hindering generalization,
especially if the dynamics of the problem exhibit a wide variability, e.g., from simple oscillatory to fully chaotic
behavior.

To overcome these limitations, we introduce Parametric Hypernetwork for Learning Interpolated Networks (PHLieNet),
a novel framework that explicitly conditions a hypernetwork on a learned embedding of the system parameters.
PHLieNet maps each parameter vector to a continuous latent embedding by interpolating over learned embedding
vectors associated with fixed anchor points. This embedding is then passed to a hypernetwork, which generates the
weights of a forecaster network. The forecaster models the temporal evolution of the system’s state, conditioned on
short-term history. By dynamically adapting the weights of the target network to reflect the input system parame-
ters, PHLieNet provides a unified and flexible modeling framework capable of capturing a wide range of dynamical
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regimes. Crucially, the proposed approach allows differentiation through the hypernetwork with respect to the input
parameters, enabling the computation of parameter-aware gradients. This capability, which is not standard in many
existing frameworks, allows PHLieNet to support gradient-based training and inference over both state and parameter
spaces. This stands in contrast to most state-of-the-art approaches, which either require training separate models for
each parametrization or lack mechanisms for explicit parametric generalization.

Hypernetworks are neural networks that output the parameters of another neural network, known as the target
network [67]. Originally introduced in the context of meta-learning[68, 69], hypernetworks have been used to generate
initial weights or learning rules that enable rapid adaptation in low-data regimes or few-shot learning scenarios. Their
success in this domain has spurred broader adoption across applications such as neural architecture search [70, 71,
72] and across a range of parametric tasks, including image retouching [73], style transfer [74], and differentiable
pruning [75]. Despite this growing interest, the application of hypernetworks to the modeling of dynamical systems,
particularly those governed by ODEs and PDEs, remains relatively nascent [76]. Early works demonstrate promising
directions, including dynamic convolutions, implemented as hypernetworks, which have achieved promising results
in short-range weather forecasting [77]. Furthermore, Berman et al. [78] proposed CoLoRA, which adapts low-rank
weights of neural networks for new parameters and initial conditions, and Zheng et al. [79] introduced HyperCAN for
modeling mechanical meta-materials under varying conditions. More recent innovations include Hypersolvers[80],
which leverage hypernetworks to approximate higher-order terms in PDE solvers, and HyperPINNs[81, 82], which
combine hypernetworks with physics-informed learning to improve generalization across varying PDE conditions.
The latter employ meta-learning strategies and low-rank architectures to enable efficient and scalable approximations
of solution manifolds.

Closest to our approach are frameworks such as Context-Informed Dynamics Adaptation (CoDA) [83], which uses
a hypernetwork to condition a dynamics model on inferred environment-specific context vectors, and LEADS, by Yin
et al. [84], which explicitly decomposes dynamics into shared and environment-specific components to generalize
across environments. In contrast, PHLieNet leverages known system parameters directly, enabling more precise and
expressive modeling across regimes.

Our method, supported by recent theoretical work that demonstrates the advantages of hypernetworks in terms of
modularity and expressiveness [85], provides a scalable and effective alternative for data-driven inference on complex
dynamical systems with parametric variability. By avoiding precomputed reduced spaces, explicit physical con-
straints, and fixed model architectures, PHLieNet adapts flexibly to a wide range of system behaviors, from fixed
points and periodic orbits to chaos. A distinctive feature of our approach is its ability to interpolate and extrapolate
across parameter space via learned embeddings, enabling coherent transitions between dynamical regimes.

In contrast to PHLieNet, approaches that embed parameters into fixed architectures often struggle to scale across
wide parametric ranges or require extensive retraining for each new configuration. Similarly, context-based methods
that infer latent representations from observed trajectories aim for parameter-agnostic generalization but are limited
when precise parametric information is available and can be explicitly leveraged. By directly incorporating parametric
variations into the embedding, PHLieNet ensures continuous and accurate forecasting across parameter space without
compromising adaptability. This design supports a principled and scalable means of interpolating between distinct
dynamical regimes within a single unified framework. Consequently, a direct comparison with approaches such as
CoDA [83] and LEADS [84] is not entirely appropriate, as these methods are tailored for settings where parametric
information is inferred from the data. In contrast, PHLieNet operates under the assumption that parameter values are
explicitly available, leveraging them directly to enable more precise and flexible modeling across diverse dynamical
regimes.

To validate our approach, we benchmark PHLieNet against parameter-agnostic temporal dynamics models and
parameter-augmented models, including LSTMs and temporal CNNs with causal dilated convolutions. We evalu-
ate performance on a diverse set of dynamical systems, including the Van der Pol oscillator, the Lorenz system, the
Rössler attractor, and Chua’s circuit. Across all systems, PHLieNet consistently outperforms or matches state-of-the-
art models in short-term forecasting accuracy, while also improving long-term statistical fidelity, as measured by his-
togram errors on state trajectories and errors in the power spectral density. Moreover, we demonstrate that PHLieNet
is expressive and capable of learning the complete spectrum of dynamics across parametric regimes, enabling it to
extrapolate in time on seen parametric dynamics and generalize to parameters unseen during training. These results
highlight the robustness and flexibility of PHLieNet, advancing the state of the art in data-driven, parametric modeling
of dynamical systems and opening new avenues for real-world applications.
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This paper is organized as follows: In Section 2, the PHLieNet framework is presented along with the considered
baseline models. Section 3 presents the comparison metrics. In Section 4, we describe the benchmark dynamical
systems, the models used for comparison, and the numerical results that highlight the efficiency and effectiveness
of PHLieNet. Section 5 concludes the paper by summarizing our contributions, offering insights and suggesting
directions for future research.

2. Methods

2.1. Parametric Dynamical Systems
A parametric dynamical system can be represented by a system of equations whose evolution depends on a param-

eter vector p ∈ RDp , whose components may include physical constants, external conditions, or control inputs. Such
systems can be formulated in continuous time as either ordinary differential equations (ODEs) or partial differential
equations (PDEs). For ODEs, the state x(t) ∈ RDx evolves according to:

dx
dt
= f (x(t),p), (1)

where f : RDx × RDp → RDx defines the dynamics of the system as a function of the state x and parameters p.
In the discrete-time setting, the evolution of the system is modeled as a sequence of state transitions governed by

a nonlinear update function:
xt+1 = Φ(xt,p), (2)

where Φ : RDx × RDp → RDx represents a possibly learned or explicitly defined discrete-time transition map. This
formulation encompasses a wide range of integration schemes, including explicit or implicit methods (e.g., Euler or
Runge-Kutta [86]), as well as data-driven alternatives such as Neural ODEs [87]. Our method is compatible with any
such formulation; however, for simplicity and clarity, we adopt a first-order integration scheme in this work expressed
as:

xt+1 = xt + ∆t · f (xt,p), (3)

where xt is the state at time t, p is the parameter vector, f (xt,p) is the time derivative (i.e., the gradient of the state), and
∆t is the discretization step size. This formulation corresponds to an explicit Euler integration of the continuous-time
dynamics.

The parameter vector p can vary across simulations, resulting in a diverse set of phenomena such as fixed points,
periodic orbits, and chaotic dynamics. This variation enables the study of how changes in p influence the evolution of
the system. A key challenge in parametric dynamical systems is efficiently capturing the relationship between p and
the resulting dynamics, especially across a wide range of parameter values or when p itself varies over time.

2.2. Learning Temporal Dynamics
In forecasting dynamical systems, we want to learn an approximation of f , using a parametrized model f w f by

minimizing some reconstruction or prediction error. The variable w f represents the parameters of the approximator
f . In case of a neural network, for example, w f is the set of all weights and biases of the network. To capture
non-Markovian effects, account for missing information, and improve performance in long-term forecasting, the ap-
proximator often incorporates information from the previous history of the state. Models that are explicitly designed
to process sequential data, such as recurrent neural networks (RNNs)[88, 89] and Temporal Convolutional Neural Net-
works with causal dilated convolutions (TCNN CD)[90], are natural choices for this task because they can effectively
capture and leverage temporal patterns and dependencies in time series. In what follows, we use the term Temporal
Dynamic Networks (TDNs) to refer to such models, grouping together architectures specifically designed for learning
from sequential data. Such approaches align with Takens’ theorem [91], which demonstrates that a system’s dynamics
can be reconstructed from a time-delayed embedding of its state under certain conditions.

In the case of TDNs, the state evolution is approximated by:

x̃t+1 =

∫
˜̇xtdt, ˜̇xt = f w f (xt, . . . , xt−ISL+1︸            ︷︷            ︸

history

; p). (4)
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where •̃ denotes inferred quantities, the networks are used to approximate the dynamics (time derivative of the state),
and we truncate the dependence on the previous states after ISL timesteps (state-less formulation).

To capture the influence of parametric variability, expressed by p, the network needs to be fitted to trajectories
from the parametrized dynamics. Let us assume we have response data from a set of parameters Ptrain = {p1, . . . , pNp }

with total |Ptrain| = NP parametrizations. For each parameterization, we assume Nics trajectories, each one representing
different initial conditions (after eliminating initial transients) and consisting of NT timesteps. Thus, the train data are
X ∈ RNp×Nics×NT . In turn, the neural network employed as an approximator f is trained to minimize the prediction
loss across time. Specifically, for a given batch of a trajectory of the data x j,k

t−ISL+1, . . . , x
j,k
t , x

j,k
t+1, corresponding to

parameter p j ∈ Ptrain, and initial condition k ∈ {1, . . . ,Nics}, the loss is defined as:

L j,k,t = ∥ẋt − ˜̇xt∥
2 = ∥ẋt − f w f (xt, . . . , xt−ISL+1; p)∥2. (5)

The network parameters are optimized by minimizing the loss over the entire parameter set, across all initial conditions
and timesteps, as follows:

w f = arg min
p j∈Ptrain

k∈{1,...,Nics}
t∈{1,...,NT }

L j,k,t. (6)

Given a sufficiently diverse parameter set Ptrain to capture the system’s behavior, the trained network can be used to
forecast unseen dynamics, extrapolate in time, and even generalize to unseen parameters. The latter is a significantly
more challenging task, as varying parameters can profoundly alter the attractor structure and overall dynamics.

2.2.1. Recurrent Neural Networks
A natural choice to approximate the time derivative f w f (xt,p) is a Long Short-Term Memory (LSTM) network.

LSTMs are particularly effective at capturing long-range dependencies through a gated mechanism that controls the
flow of information over time steps [44]. Such models have been successfully applied in learning dynamical system
representations [45]. The LSTM updates its hidden state ht and the cell state ct at each time step t based on the
previous states ht−1, ct−1, and the current input xt. The update equations are given by:

it = σ(Wixt + Uiht−1 + bi), (7)
ft = σ(W f xt + U f ht−1 + b f ), (8)
ot = σ(Woxt + Uoht−1 + bo), (9)
c̃t = tanh(Wcxt + Ucht−1 + bc), (10)
ct = ft ⊙ ct−1 + it ⊙ c̃t, (11)
ht = ot ⊙ tanh(ct), (12)

where σ denotes the sigmoid activation function and ⊙ represents element-wise multiplication. The vectors it, ft, and
ot are the input, forget, and output gates, respectively. All parameters W∗, U∗, and b∗ are learned during training
and collectively constitute the parameter set w f , which is not to be confused with the parametric dependencies of the
model p. The LSTM approximates the time derivative of the state f w f as in Equation (4). During training, the model
minimizes the loss defined in Equation (6) across all parameterizations and initial conditions, allowing f w f to learn
the parameter-dependent dynamics of the system.

2.2.2. Causal Dilated Temporal CNN (CD-TCNN)
Another effective solution to model sequential data, while ensuring causality, is a Causal Dilated Temporal Con-

volutional Network (CD-TCNN). This architecture leverages dilated convolutions to efficiently capture long-range
dependencies without relying on recurrent structures. Specifically, each convolutional layer uses a dilation factor that
grows exponentially with the layer index:

di = 2i, i = 0, 1, . . . , L − 1,

where L is the number of layers. This exponentially increasing dilation pattern ensures that the receptive field grows
rapidly, enabling the model to capture temporal dependencies over large windows. For a 1D temporal convolution at
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Figure 1: Information flow of a Long Short-Term Memory (LSTM) Cell.

time step t, the output yt is computed as:

yt =

k−1∑
i=0

wi · xt−i·d,

where wi are the learned convolutional weights, k is the kernel size, and d is the dilation factor. This formulation
allows each output yt to aggregate information from a causal receptive field of past states (xt, xt−1, . . . , xt−ISL), without
accessing future inputs. Causal padding is used in each convolutional layer to prevent information leakage from future
time steps. For a convolutional kernel of size k, the causal padding at layer i is computed as:

paddingi = di · (k − 1).

The total receptive field R of the network is then:

R = 1 +
L−1∑
i=0

(k − 1) · di.

After each convolution, a smooth nonlinearity (SiLU activation) is applied:

SiLU(x) = x · σ(x),

where σ(x) is the sigmoid function. Unlike recurrent networks, CD-TCNN omits fully connected layers, relying
instead on a final 1 × 1 convolution to project the learned features to the output dimension. This approach reduces the
parameter count while maintaining sufficient expressiveness for temporal data modeling.

In this work, the number of layers L is automatically determined by the length of the input sequence and the size of
the kernel to ensure that the receptive field covers the necessary temporal context. To determine the minimum number
of layers L required to cover an input sequence of length ISL, we analytically invert the receptive field formula. Given
a kernel size k > 1, the receptive field grows as R = 1 + (k − 1)(2L − 1). Solving for L, we obtain:

L =
⌈
log2

(
ISL − 1

k − 1
+ 1

)⌉
.

This ensures that the receptive field spans at least ISL time steps, allowing the network to access the full temporal
context during training. For example, with k = 5, this results in L = 3 layers for sequences of length ISL = 16, and L =
4 layers for ISL = 32. More information on the hyperparameters of the models used is reported in Appendix Appendix
B. The dilation pattern is illustrated in Figure 2a. The causal temporal kernel is illustrated in Figure 2b.

2.3. Modeling the Parametric Dependency
The main challenge addressed in this work lies in formulating an expressive functional representation for Equa-

tion (4). We distinguish between three modeling paradigms: (i) a trivial, parameter-agnostic formulation; (ii) the
established approach of state augmentation for parametric modeling, as reviewed in section 1; and (iii) the proposed
PHLieNet framework, which introduces a principled alternative.
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(a) Visualization of the exponentially increasing dilation pattern. Each hidden
layer employs a convolutional kernel with a dilation factor di = 2i, which en-
ables the network to efficiently capture long-range dependencies across input se-
quences. The final output aggregates information from a broad receptive field that
spans multiple temporal scales.
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dilation factors, allowing the receptive field to expand and integrate long-range
dependencies while respecting causality.

Figure 2: Illustration of the exponentially increasing dilation pattern and the causal convolutional kernels in the Causal Dilated Temporal Convolu-
tional Network (CD-TCNN).

2.3.1. Parametric-Agnostic Case
A straightforward way to handle parametric dependency is to treat all parametric dynamics uniformly, assuming

that p does not significantly change the functional form, effectively ignoring the parametric dependency. Alternatively,
we may approximate the complete f w f without assuming explicit knowledge or dependence on p. This form is referred
to as the parametric-agnostic model. The functional form then becomes:

x̃t+1 = xt + ∆t · f w f (xt, . . . , xt−ISL+1). (13)

Any temporal dynamics model such as an LSTM, a GRU, or a TCN-CD can then be used to model Equation (13).

2.3.2. State Augmentation
Another straightforward way to handle parametric dependency is to augment the hidden state. As a result, f w f

becomes a neural network that receives as input a vector with the state concatenated to the parameters. Thus, the
augmented state is given by:

ut =

[
xt

p

]
∈ RDx+Dp (14)

and the state evolution is approximated by

x̃t+1 = xt + ∆t · f w f (ut, . . . ,ut−ISL+1). (15)

2.4. Parametric Hypernetwork with Learned Interpolation Embedding

In systems where the dynamics heavily depend on the external parameters p, learning a single set of network
coefficients w f , like proposed in Section 2.3.1, may not adequately capture the full range of behaviors induced by
different values of p. Moreover, appending the parameters to the state of the system, as in Section 2.3.2, may not
be adequate, as the parameters might affect the structural form of f . Instead, concatenation hinders flexibility in the
expressiveness of f . To address this challenge, in this work, we utilize a hypernetwork which dynamically generates
the coefficients w f of the network(s) used to model f conditioned on the input parameter vector p.

Hypernetworks, as introduced by Ha et al. [67], provide a framework for generating the coefficients w f of another
neural network, meaning the corresponding weights and biases. Instead of directly learning a function f that models
the system’s dynamics for each possible value of p, a hypernetwork can be used to generate the coefficients of f
conditioned on p. However, directly conditioning the hypernetwork on the raw parameters p presents significant
challenges, as the network might struggle to distinguish between qualitatively different dynamical regimes, especially
when transitions are nonlinear or discontinuous. This leads to poor generalization across regimes and necessitates
some form of representation learning or clustering to structure the parameter space. A related approach using linear
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Figure 3: Overview of the learned interpolation mechanism used in PHLieNet. An input parameter vector p is used to compute interpolation
weights {ai(p)} over a set of anchor points {p(i)}. Each anchor is associated with a learned embedding e(i). The final embedding e(p) =

∑
i ai(p)e(i)

is a convex combination of the learned embeddings, which is then used as input to the hypernetwork to generate the coefficients of the target
network. This structure enables generalization across parameter space by smoothly interpolating between known regimes.

RNNs and a linear embedding of the parameter vector was proposed in [92]. Extending such approaches to nonlinear
systems and nonlinear target networks remains an open challenge.

In this work, we adopt a different approach. We capture the parametric dependence of the system through a
structured two-stage mechanism, although the entire architecture is trained end-to-end. First, the input parameters p
are mapped to a continuous embedding via linear interpolation over a set of learned anchor embeddings. Second, the
continuous embedding is passed to a hypernetwork that generates the coefficients of the target network. We refer to
this method as Parametric Hypernetwork with Learned Interpolated Embedding (PHLieNet). A detailed description
of its implementation follows.

2.4.1. Step 1: Learned Interpolated Embedding
Let {p(i)}

Ne
i=1 be a set of anchor parameter vectors and let {e(i)}

Ne
i=1 ⊂ RDe be their corresponding learned embeddings.

The embeddings are learned, so the matrix we = [e(1), . . . , e(Ne)] represents the weights of this layer. Given a new
parameter vector realization p j, we compute the interpolation weights {αi(p j)}Ne

i=1 such that:

Ne∑
i=1

αi(p j) = 1, αi ≥ 0, (16)

and define the embedding of p j as:

e(p j) =
Ne∑
i=1

αi(p j) e(i). (17)

In our setting, the parameter space is one-dimensional and we use simple linear interpolation between learned
anchor embeddings. In higher-dimensional parameter spaces, the interpolation weights can be generalized to ensure
convex combinations of nearby anchors. For instance, the weights can be designed to reflect proximity in parameter
space while maintaining smoothness and stability in the resulting embedding. This allows the method to interpo-
late and, to some extent, extrapolate across a wide range of parameterized dynamical regimes in a continuous and
differentiable manner. The learned interpolated embedding layer is illustrated in Figure 3.

The number of anchor embeddings Ne plays a crucial role in determining the expressiveness and generalization
ability of the PHLieNet framework. On the one hand, Ne must be sufficiently smaller than the number of parametriza-
tion included in the training data, ensuring that the network is forced to learn meaningful interpolations in embedding
space rather than memorizing the dynamics associated with each training parameter. This promotes generalization and
encourages the model to capture shared structure across parametric regimes. On the other hand, if Ne is too small, the
resulting embedding space may lack the capacity to represent the diversity of dynamics present in the dataset, particu-
larly in systems exhibiting rich or highly nonlinear behaviors. In such cases, the model may fail to generate sufficiently
expressive target networks, limiting its ability to accurately forecast dynamics across parameter space. Therefore, Ne
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Figure 4: PHLieNet framework: The parameter p is passed through the Learned Interpolated Embedding (LIE) layer to produce an embedding
e(p). This embedding is used by the Hypernetwork to generate the weights of a target network (e.g., a causal dilated CNN or LSTM), which is then
used to model and integrate the system’s temporal dynamics.

must be carefully chosen to balance the trade-off between interpolation capacity and model expressiveness, ensuring
robust generalization while retaining sufficient representational power.

2.4.2. Step 2: Parameter Generation via Hypernetwork.
The second stage of our framework involves the generation of the coefficients w f of the target temporal dynamics

model using a hypernetwork. The hypernetwork, denoted by HNN, takes as input the embedding e(p j) ∈ RDe produced
in Step 1 and outputs the parameters w f ∈ R|w f | of network f . Formally, this mapping is defined as:

w f = HNN
(
e(p j); wH

)
, (18)

where HNN : RDe → R|w f | is the hypernetwork parameterized by coefficients wH , and |w f | denotes the number of
weights of the target model f . The target temporal dynamics network f w f , with coefficients w f generated by the
hypernetwork, is then used to model the time derivative of the system’s state based on a history of observations, as
in Equation (4):

˜̇xt = f w f
(
xt, . . . , xt−ISL+1

)
= f HNN

(
e(p j); wH

)(
xt, . . . , xt−ISL+1

)
. (19)

The proposed PHLieNet framework is illustrated in Figure 4. By conditioning the coefficients w f of the temporal
dynamics model on the system parameters p, the hypernetwork enables flexible and continuous adaptation to a wide
range of dynamical regimes. This architecture allows a single, unified model to generalize across different parameter
configurations, eliminating the need to train separate models for each regime. More details on the hypernetwork
architecture are provided in Appendix Appendix A.

Figure 5 offers a methodological perspective on PHLieNet, emphasizing interpolation in the weight space. The
process begins with the linear combination of task-specific embeddings, representing different dynamical regimes, in
a shared latent space. These interpolated embeddings are then mapped by a hypernetwork to generate model weights,
effectively performing interpolation in the weight space. Crucially, this nonlinear interpolation induces meaningful
transitions in the phase space dynamics of the resulting models. By focusing on the weight space (model space), rather
than the state or parametric space, this approach enables coherent and controllable blending of dynamical behaviors
across tasks or parameter regimes.

3. Evaluation Metrics

To evaluate the forecasting performance of parametric models across different dynamical systems, we employ
complementary metrics that capture different aspects of predictive accuracy. Namely, we will employ the time evo-
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Figure 5: Overview of the three-step modeling process: (1) Linear combination of task embeddings in the shared embedding space; (2) Trans-
formation of the embedding through a hypernetwork to generate corresponding model weights; (3) Nonlinear interpolation in the model (weight)
space, which induces interpolation in the resulting phase space dynamics. This procedure enables smooth transitions across parametric tasks while
preserving expressive dynamical behavior.

lution of the normalized root-mean-square error (NRMSE), the total root-mean-square error (RMSE), the Time-to-
Threshold (TtT), the power spectrum error, and the histogram L1 norm. These metrics jointly assess short-term
prediction accuracy, frequency content, and long-term statistical behavior, and are briefly presented below.

3.1. Time Evolution of the Normalized RMSE
To evaluate the accuracy of model predictions over time, we computed the normalized root mean squared error

(NRMSE) as a function of time. The NRMSE at time t is defined as:

NRMSE(t) =
∥̃x(t) − x(t)∥2
√
σ2 + ε

, (20)

where x̃(t) and x(t) ∈ RDx are the predicted and true states, and σ2 is the variance of the ground truth states aggregated
across all parameters, initial conditions, times, and dimensions. The small constant ε ensures numerical stability.
We calculate the mean of the NRMSE across initial conditions to characterize the predictive performance of different
models. This time-resolved error curve provides information on how the accuracy degrades during extrapolation in
time.

3.2. Root Mean Square Error (RMSE)
The RMSE quantifies the average magnitude of the prediction error over time and across dimensions. Given

predicted trajectories X̃ ∈ RNp×Nics×NT×Dx and true trajectories X, it is defined as:

RMSE =

√√√√
1

NpNicsNT Dx

Np∑
q=1

Nics∑
i=1

NT∑
t=1

Dx∑
d=1

(
x̃q

i,t,d − xq
i,t,d

)2
, (21)

where Np is the number of total parameters in the dataset, Nics is the number of initial conditions per parameter, NT is
the number of time steps and Dx is the dimensionality of the state.

3.3. Time-to-Threshold (TtT)
The Time-to-Threshold (TtT) metric quantifies the duration for which the predicted trajectory remains within an

acceptable error margin relative to the ground truth. We define the TtT based on the NRMSE defined in Section 3.1.
It measures the maximum continuous time during which the normalized error stays below a specified threshold θrel.
The Time-to-Threshold ttt is given by:

TtTθrel = max
{
t
∣∣∣ NRMSE(t′) < θrel ∀ t′ ≤ t

}
· ∆t , (22)
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where θrel is the predefined relative error threshold and ∆t is the simulation time step. In practice, the TtT is calculated
as the maximum continuous time before the relative error first exceeds the threshold θrel, averaged (or otherwise
aggregated) over multiple initial conditions to obtain a robust measure of predictive performance.

3.4. Power Spectrum Error

The power spectrum error measures the discrepancy between the frequency content of predicted and true trajec-
tories. For each dimension, we compute the power spectral density (PSD) using a real-valued Fast Fourier Transform
(FFT). Given a signal x(t) ∈ R, which is a component of the state evolution x ∈ RDx sampled at frequency fs = 1/∆t,
the frequency spectrum in decibels (dB) is calculated as:

PSD( f ) = 20 log10

(
2
N
|F [x]( f )|

)
, (23)

where F [x]( f ) denotes the FFT of the signal x(t), and N is the number of time steps. The power spectrum error is
then defined as the average ℓ1-distance between the predicted and true spectra across dimensions:

Spectrum Error =
1

Dx

Dx∑
d=1

1
F

F∑
f=1

∣∣∣∣PSD(d)
pred( f ) − PSD(d)

true( f )
∣∣∣∣ , (24)

where F is the number of frequency bins.

3.5. Histogram L1 Norm

To assess the long-term statistical behavior of the system, we compute the L1 distance between histograms of
predicted and true state values. Given flattened state trajectories histograms are computed using a common binning
strategy, and the L1 norm between the normalized histograms is calculated:

L1Hist =

B∑
b=1

∣∣∣T (b) − T̃ (b)
∣∣∣ , (25)

where B is the number of bins, and T , T̃ are the normalized bin frequencies of the true and predicted states, respec-
tively. For multivariate systems discussed in this work, the L1 distance is computed per dimension and averaged.

4. Applications

Our framework is implemented in PyTorch [93]. We have developed the PHLieNet framework implementation on
the hypernetwork library [94], extending it to suit our needs. Our runs are conducted on the Euler supercomputing
cluster at ETH Zurich. Each run utilizes an RTX 3090 GPU, with 10 CPUs per task and 1 GB of RAM per CPU. For
benchmarking, we consider the networks summarized in Table 1.

Table 1: Reference table for compared networks.

Reference name Description
FFNN-A A feedforward neural network agnostic to the parameter.
FFNN-P A feedforward neural network, augmented on the state with the parameter.
LSTM-A An LSTM neural network agnostic to the parameter.
LSTM-P An LSTM neural network, augmented on the state with the parameter.
TCNN-CD-A A causal dilated temporal CNN agnostic to the parameter.
PHLieNet The proposed Parametric Hypernetwork with Learned Interpolation Embedding

Although the architecture of the TCNN-CD is quite effective, as it leverages temporal invariances in the data,
it is not straightforward to design a state-augmented TCNN-CD. In fact, for complex architectures where the input
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modality requires spatial invariance (handled by convolutions), it is not straightforward to incorporate other modali-
ties. In our case, the parameter can be seen as an additional modality. Here, the proposed PHLieNet framework offers
a compelling alternative: TCNN-CD can be used as the target network, while the parameter modulates the kernels via
the hypernetwork. Thus, in the following, we use the TCNN-CD as the target network, combining the best of both
worlds: parameter-based modulation that interpolates over the parametric space, and the TCNN-CD as the dynamics
propagator. Regarding hyperparameters, we did not perform an exhaustive search for optimal values. Our aim is not
to achieve the absolute best possible benchmark performance, but rather to demonstrate the viability of our proposed
modeling framework.

The networks are trained on a dataset that contains trajectories X ∈ RNp×Nics×NT×Dx generated from a set of param-
eter values denoted as Ptrain, with cardinality Np. For validation, we use the same set of parameters Ptrain but with
trajectories initialized from different initial conditions. We evaluate the methods in the auto-regressive forecasting
(AR) setting. For testing, we consider two distinct tasks. In the first task, we evaluate the extrapolation in the time
domain on the values of the seen parameters (AR-T), so PAR-T

test = Ptrain. In the second task (AR-P), we assess the
networks’ ability to generalize to unseen parameter values, a significantly more challenging task. Here, trajectories
are sampled from a testing set of parameters PAR-P

test .
We now apply the proposed framework to a diverse set of dynamical systems chosen to reflect a broad range of

behaviors and modeling challenges. These systems include the Van der Pol oscillator, the Lorenz 3D system, the
Rössler attractor, and the dynamics of Chua’s circuit. Together, they span nonlinear oscillations, chaotic attractors,
and complex bifurcation patterns. For each system, we report results on both the AR-T and AR-P tasks. The following
sections provide details on each system and the corresponding experimental setup.

4.1. The Van der Pol Oscillator
The Van der Pol oscillator is a second-order non-linear dynamical system originally introduced by Balthasar van

der Pol in the 1920s while studying electrical circuits containing vacuum tubes [95]. The Van der Pol oscillator is
governed by the following second-order differential equation:

d2x1

dt2 − µ(1 − x2
1)

dx1

dt
+ x1 = 0, (26)

which can be rewritten as a system of first-order ODEs:

dx1

dt
= x2, (27)

dx2

dt
= µ(1 − x2

1)x2 − x1, (28)

where x = [x1, x2]T is the state variable with dimensionality Dx = 2 and µ ∈ R+ is a scalar parameter that controls the
degree of nonlinearity and the damping intensity. The system exhibits qualitatively different behaviors depending on
the value of µ. For small µ, it behaves like a near-harmonic oscillator, whereas for larger µ, it transitions to nonlinear
relaxation oscillations with slow dynamics punctuated by rapid jumps. This rich variety of dynamics renders the Van
der Pol oscillator an important model for studying non-equilibrium phenomena and oscillatory behavior in biological,
chemical, and engineering systems [96].

In our work, we vary the parameter µ in the range Ptrain = {1, 2, . . . , 8} to explore various dynamical regimes. We
use a fourth-order Runge-Kutta integrator with a solver time step δt = 0.001 and sample observations every ∆t = 0.05
units of time. For the training and validation datasets, we generate a single long trajectory with N train

ics = Nval
ics = 1,

each simulated up to 200 time units, i.e., N train
T = Nval

T = 4K timesteps. Train and validation data are therefore
X ∈ R8×1×4K×2. The noise level during training is set to σnoise = 10%

In contrast, for the test data, we simulate shorter trajectories up to 20 time units, i.e. N test
T = 400, using N test

ics = 100
distinct initial conditions per parameter value. The initial conditions are sampled independently from a uniform
distribution in the square [−5, 5]2 ⊂ R2. This setup enables robust evaluation across a broad range of initial conditions
and supports both temporal and parametric generalization.

As elaborated in Section 4, we define two test sets to evaluate the performance of the examined algorithms in
autoregressive testing scenarios: a time extrapolation set using the same µ values as in training, but with unseen initial
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Figure 6: Normalized Root Mean Squared Error (NRMSE) evolution in time for extrapolation on seen parameters (AR-T).
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Figure 7: Model performance on the Van der Pol oscillator dynamics for extrapolation in time on seen parameters (AR-T). (a) RMSE error
aggregated over time. (b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

conditions, and a parameter extrapolation set with unseen µ values PAR-P
test = {1.5, 2.5, . . . , 8.5}. This setup allows us to

assess both temporal generalization and robustness to unseen dynamical regimes.
In Figures 6 and 7, we benchmark the performance of the networks summarized in Table 1 on the autoregressive
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testing task with previously seen parameters (AR-T). FFNN-A is omitted because its predictions quickly diverge.
PHLieNet demonstrates lower NRMSE and RMSE errors in Figures 6 and 7a, as well as a marginally higher time-
to-threshold in Figure 7b, indicating its superior short-term forecasting performance. Furthermore, the proposed
PHLieNet shows excellent performance with respect to the power spectrum error in Figure 7c and a significantly lower
histogram L1 norm error in Figure 7d, underscoring its ability to better capture the long-term statistics of the attractors.
In general, we observe that the parameter-agnostic models of Table 1 exhibit larger errors and a faster divergence in
their NRMSE, resulting in a worse short-term forecasting performance. Although augmenting LSTMs and FFNNs
with the parameter in the state reduces errors somewhat, PHLieNet consistently outperforms these alternatives across
all metrics, indicating superior performance.

In Figures 8 and 9, the forecasting performance of the networks summarized in Table 1 is benchmarked in the
challenging task of autoregressive testing on unseen parameters (AR-P), with the key detail that these parameters
were not used during training.
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Figure 8: Normalized Root Mean Squared Error (NRMSE) evolution in time for extrapolation on unseen parameters (AR-P).

Similarly to the AR-T testing case, the proposed PHLieNet stands out by achieving low power spectrum error, low
L1 histogram error, low RMSE, and a high time-to-threshold, demonstrating its ability to accurately extrapolate to
unseen parameters by interpolating in the weight space of the target networks. Compared to the benchmarking models
of Table 1, PHLieNet consistently yields lower NRMSE and RMSE errors, highlighting its superior short-term fore-
casting capabilities. Furthermore, it exhibits lower power spectrum and L1 histogram errors, further underscoring its
effectiveness in capturing the long-term statistical properties of dynamics. As expected, parameter-informed models
outperform agnostic ones, achieving lower errors and better overall performance.
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Figure 9: Model performance on the Van der Pol oscillator dynamics for extrapolation on unseen parameters (AR-P). (a) RMSE error aggregated
over time. (b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

The performance of the implemented PHLieNet is further demonstrated in Figure 10, where we plot ground
truth data along with predicted trajectories in different parameter values for both testing autoregressive tasks (AR-T
and AR-P). We observe that PHLieNet qualitatively captures the attractors over a broad range of parameter values,
demonstrating its ability to reproduce the system dynamics in diverse dynamic regimes.
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(a) Extrapolation in time testing (AR-T)

(b) Generalization on unseen parameters testing (AR-P)

Figure 10: Ground truth data and predicted trajectories from PHLieNet for the Van der Pol oscillator across different parameters.

4.2. The Lorenz 3D System

The Lorenz system, introduced by Edward Lorenz in 1963 [97], is a classical three-dimensional nonlinear dynam-
ical system that exhibits deterministic chaos. Originally derived as a simplified model for atmospheric convection, it
has become a cornerstone in the study of chaotic systems and strange attractors. The Lorenz system is defined by the
following set of coupled differential equations:

ẋ1 = σ(x2 − x1), (29)
ẋ2 = x1(ρ − x3) − x2, (30)
ẋ3 = x1x2 − βx3, (31)

where x = [x1, x2, x3]T ∈ R3 is the system state, and σ, β, ρ ∈ R are scalar parameters that govern the dynamics. In
our experiments, we fix σ = 10 and β = 8

3 , and vary the parameter ρ.
We use a fourth-order Runge–Kutta integrator (RK45) with a solver time step of δt = 0.001, and sample observa-

tions every ∆t = 0.01 time units. The parameter set of the training and validation data is Ptrain = {28, 36, 44, 52, 60, 68}.
For both training and validation data, we simulate N train

ics = Nval
ics = 10 initial conditions for each parameter up to 50

time units leading to trajectories with N train
T = Nval

T = 5K timesteps. For each trajectory, the first 100 time units are
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Figure 11: Root Mean Squared Error (RMSE) evolution in time for extrapolation on seen parameters (AR-T).

discarded to avoid initial transient effects. The initial conditions are sampled uniformly from the cube [−5, 5]3 ⊂ R3.
Noise during training is set to σnoise = 10% For the autoregressive testing datasets we simulate N test

ics = 20 initial con-
ditions for 5 time units (N test

T = 500). For parameter extrapolation, we use unseen values PAR-P
test = {32, 40, 48, 56, 64}.
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Figure 12: Model performance on the Lorenz dynamics for extrapolation in time on seen parameters (AR-T). (a) RMSE error aggregated over time.
(b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.
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In Figures 11 and 12, we benchmark the performance of the inference models summarized in Table 1 in the
autoregressive testing task with seen parameters (AR-T). The FFNN-A variant is omitted here because its predictions
diverge quickly. In the NRMSE evolution plot in Figure 11, we observe that PHLieNet achieves slightly lower errors
than LSTM-P, with a marginally higher TtT0.2 in Figure 12b. Additionally, the parameter-agnostic models show
a more rapid increase in the reconstruction error, indicating poorer performance in capturing the involved dynamics.
Similarly to the van der Pol case study, the proposed PHLieNet exhibits slightly lower RMSE and higher TtT compared
to LSTM-P, as illustrated in Figures 12a and 12b. Finally, in Figures 12c and 12d, PHLieNet and LSTM-P both display
low power spectrum and L1 histogram errors, indicating their ability to capture the state statistics of the dynamics.

Next, we validate the performance of the networks of Table 1 in the autoregressive testing task on unseen param-
eters (AR-P). In the evolution of NRMSE in Figure 13, we observe that PHLieNet achieves slightly lower errors than
LSTM-P, with a marginally higher TtT0.2, similarly to the time extrapolation case in Figure 11. Parameter-agnostic
models, in contrast, exhibit a more rapid increase in error. Furthermore, PHLieNet consistently achieves slightly
lower RMSE and higher TtT compared to LSTM-P, as illustrated in Figure 14a and Figure 14b Finally, in Figure 14c
and Figure 14d, both PHLieNet and LSTM-P maintain a low power spectrum and L1 histogram errors, indicating that
they effectively capture the statistical properties of the system dynamics.
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Figure 13: Root Mean Squared Error (RMSE) evolution in time for extrapolation on unseen parameters (AR-P).
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Figure 14: Model performance on the Lorenz dynamics for extrapolation on unseen parameters (AR-P). (a) RMSE error aggregated over time. (b)
Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

In Figure 15, we visualize the ground truth data attractors of the Lorenz system and compare them with those
formed by the predicted trajectories. In Figure 16, we do the same for the case of generalization to unseen parameters
in the training dataset. These results visually reinforce the quantitative findings discussed earlier, demonstrating that
PHLieNet successfully reconstructs the dynamics of the attractors across different dynamical regimes, including those
with unseen parameters during training. Despite the slight variations in the shape and characteristics of the attractors
caused by different parameterizations, the network accurately captures and reproduces the underlying dynamics in
each case, highlighting the crucial role that the parameter plays in shaping the attractor.
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Figure 15: Extrapolation in time: Comparison of ground truth and predicted attractors across different parameter regimes.

Figure 16: Generalization on unseen parameters: Comparison of ground truth and predicted attractors across different parameter regimes.
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4.3. The Rössler System

The Rössler system, introduced by Otto Rössler in 1976 [98], is a set of three coupled nonlinear ordinary differ-
ential equations (ODEs) that exhibit chaotic behavior. Rössler initially developed this system as a simplified model to
explore chaos in continuous dynamical systems. Its simplicity, both in terms of form and computational requirements,
has made it a widely studied example in the field of chaos theory.

The system is defined by the following set of ODEs:

ẋ1 = −x2 − x3, (32)
ẋ2 = x1 + ax2, (33)
ẋ3 = b + x3(x1 − c), (34)

where x = [x1, x2, x3]T ∈ R3 is the state and a, b, c are scalar parameters controlling the dynamics. The parameters
a, b, and c in the Rössler system play distinct roles in shaping its dynamics: a controls the linear damping in the
y-equation, b introduces a constant drift in the z-equation, and c modulates the nonlinearity in the z-equation through
coupling with x. As these parameters are varied, the system transitions from simple periodic oscillations to chaotic
behavior, which is often visualized in the form of attractors. For specific parameter values, the system generates a
fractal attractor known as the Rössler attractor, one of the most iconic examples of deterministic chaos. Despite its
simplicity, the Rössler system exhibits rich dynamical behavior, including bifurcations, periodic orbits, and chaotic
attractors, depending on the values of the chosen parameters. Rössler’s work has been extended to various fields such
as chemical reactions, biological systems, and electronics, where chaos plays a critical role, making the system a
valuable testbed for both theoretical studies and practical applications [96].

In our experiments, we fix a = b = 0.1 and vary c to explore different regimes, from periodic motion to deter-
ministic chaos. We simulate trajectories using a fourth-order Runge–Kutta integrator (RK4) with a solver time step
δt = 0.001, and sample the solution every∆t = 0.1 time units. To generate training data, we simulate N train

ics = Nval
ics = 10

trajectories up to 100 time units (preceded by a transient period of 100 time units, which is discarded), which means
N train

T = Nval
T = 1K timesteps. The initial conditions are sampled uniformly from the cube [−1, 1]3 ⊂ R3. The pa-

rameter set for the training and validation data is Ptrain = {4, 6, 8, 10, 12, 14, 16, 18}. For the test datasets, we generate
N test

ics = 100 trajectories per parameter value, each with the same duration of 100 time units (N test
T = 1K). For param-

eter extrapolation, we use unseen values PAR-P
test = {5, 7, 9, 11, 13, 15, 17} to evaluate generalization across dynamical

regimes.
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Figure 17: Root Mean Squared Error (RMSE) evolution in time for extrapolation on seen parameters (AR-T).

In Figure 18, we first benchmark the performance of the networks in Table 1 in the autoregressive testing task
for time extrapolation on trajectories from seen parameters (AR-T). The proposed PHLieNet consistently delivers low
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NRMSE errors, while it exhibits slightly higher errors than LSTM-P, with a slightly lower TtT0.2 on the NRMSE. Both
these parameter-informed approaches achieve lower errors than FFNN-P, and, as expected, all parameter-informed
models exhibit a slower increase in error compared to the agnostic ones. This trend is also apparent in the cumulative
RMSE plot in Figure 18a.

Interestingly, in the average TtT per trajectory shown in Figure 18b PHLieNet actually achieves a higher TtT than
LSTM-P. This suggests that the slightly worse performance in the cumulative NRMSE is mainly due to a few outlier
trajectories. On average per trajectory, PHLieNet is more accurate in the short term compared to all other methods,
but these outliers contribute to the cumulative NRMSE observed in Figure 17. Finally, in Figure 18c and Figure 18d,
PHLieNet achieves the lowest power spectrum and L1 histogram errors, indicating that it effectively captures the
statistical properties of the dynamics. LSTM-P is on par with PHLieNet in this regard.
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Figure 18: Model performance on the Rössler dynamics for extrapolation in time on seen parameters (AR-T). (a) RMSE error aggregated over
time. (b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

Next, we present the results for the parametric extrapolation task (AR-P) in Figures 19 and 20. From the NRMSE
evolution in Figure 19 and the cumulative RMSE in Figure 20a, we observe that PHLieNet performs comparably to
LSTM-P, although LSTM-P exhibits slightly lower errors on average. Both models significantly outperform all other
methods. In terms of short-term prediction, as reflected by the mean TtT0.2 per trajectory in Figure 20b, PHLieNet
and LSTM-P achieve longer prediction horizons than the other models. Meanwhile, all agnostic models show very
high RMSEs and very low TtT0.2 values.

In Figure 20c, we note that PHLieNet performs on par with FFNN-P but does not reach the low power spectrum
errors of LSTM-P. Overall, PHLieNet faced more challenges in extrapolating the dynamics of this system compared
to the other cases considered in this study. Nonetheless, PHLieNet achieves the lowest L1 histogram error, as shown
in Figure 20d. Once again, the superiority of parameter-informed models is evident, with all such models demonstrat-
ing lower errors than their agnostic counterparts.
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Figure 19: Root Mean Squared Error (RMSE) evolution in time for extrapolation on unseen parameters (AR-P).
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(b) Time-to-Threshold (TtT) metric.
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Figure 20: Model performance on the Rössler dynamics for extrapolation on unseen parameters (AR-P). (a) RMSE error aggregated over time. (b)
Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

In Figure 21, we visualize the ground truth data attractors of the Roessler system and compare them with those
formed by the predicted trajectories across various parameter regimes. In Figure 22, we present similar compar-
isons for the case of generalization to unseen parameters that were not included in the training dataset. These visual
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comparisons complement the quantitative results discussed earlier, providing compelling evidence that PHLieNet is
capable of accurately reconstructing the dynamics of the Roessler system across a diverse range of parameter values.
Although the shape and structure of the attractors vary significantly due to the influence of the system parameter, the
network consistently reproduces the key dynamical features of each attractor. This highlights the network’s ability to
extrapolate and generalize, underscoring its predictive capabilities in complex systems where parametric variability
strongly influences the underlying attractor dynamics.

Figure 21: Extrapolation in time for the Roessler system: Comparison of ground truth and predicted attractors across different parameter regimes.
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Figure 22: Generalization on unseen parameters for the Roessler system: Comparison of ground truth and predicted attractors.

4.4. Chua’s circuit

Chua’s circuit, first introduced by Leon O. Chua in 1983 [99], is a nonlinear electronic system that exhibits chaotic
behavior through a simple configuration of linear elements (resistors, capacitors, and inductors) and a nonlinear com-
ponent, the Chua diode, which introduces a piecewise-linear characteristic. The dynamics of the circuit are described
by a system of three first-order ordinary differential equations governing the voltage and current, which give rise to a
wide range of dynamical phenomena such as periodic orbits, bifurcations, and chaotic attractors.
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The equations governing the dynamics of Chua’s circuit are given by:

ẋ1 = a
(
x2 − x1 − h(x1)

)
, (35)

ẋ2 = x1 − x2 + x3, (36)
ẋ3 = −bx2, (37)

Here, x = [x1, x2, x3]T ∈ R3 is the state that represents the normalized variables corresponding to the circuit’s voltages
and currents, while a and b are parameters related to the circuit’s components. The nonlinearity in the system is
introduced by the piecewise linear function h(x1), which models the behavior of the Chua diode.

h(x) = µ1x + 0.5(µ0 − µ1)(|x + 1| − |x − 1|) (38)

where µ0 and µ1 are parameters that control the slope of the diode’s characteristic. This piecewise function contributes
to the rich and diverse dynamical behavior of the system, including the emergence of chaotic attractors, bifurcations,
and complex trajectories in phase space. In the following, we vary the parameter a as it crucially determines the
balance between linear and nonlinear dynamics through its coupling of nonlinearity to the difference x1−x2. Varying a
allows us to explore a broad range of dynamic regimes, including stable fixed points, limit cycles, and chaotic behavior,
providing a rich and informative spectrum of system responses. In contrast, parameters such as b (oscillation damping)
and µ0, µ1 (nonlinearity shaping) have more specialized effects. We fix b = 100/7 ≈ 14.28, µ0 = −8/7 ≈ −1.14,
and µ1 = −5/7 ≈ −0.71, following previous studies [100] that extensively analyzed the dynamics of the double-scroll
attractor.
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Figure 23: Root Mean Squared Error (RMSE) evolution in time for extrapolation on seen parameters (AR-T).

Trajectories of the state evolution are obtained by discretizing and simulating Equation (37) with δt = 0.001, using
a fourth-order Runge-Kutta integrator. Trajectories are subsampled to ∆t = 0.05 time units. The initial conditions
[x0, y0, z0]T are sampled from random uniform distributions: x1 ∼ U[−0.5, 0.5], x2 ∼ U[−0.5, 0.5], x3 ∼ U[−0.1, 0.1].
The first 100 time units are truncated to avoid initial transient effects. The train and validation data contain trajectories
from the parametric set Ptrain = {8.5, 9, 9.5, 10}. In the training data, we simulate N train

ics = 10 initial conditions
for 50 time units corresponding to N train

T = 1K timesteps. A similar dataset is constructed for validation, although
starting from different initial conditions. For testing we simulate N train

ics = 50 initial conditions per parameter value
for 10 time units corresponding to N train

T = 200 timesteps. For the parameter extrapolation task we use unseen values
PAR-P

test = {8.75, 9.25, 9.75}.
The comparison metrics for the test time extrapolation task (AR-T) are presented in Figures 23 and 24. From

the evolution of NRMSE in Figure 23 and the cumulative RMSE in Figure 24a, we observe that all parameter-
informed models achieve lower errors than the parameter-agnostic ones. Among them, the PHLieNet variant with
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Figure 24: Model performance on the Chua dynamics for extrapolation in time on seen parameters (AR-T). (a) RMSE error aggregated over time.
(b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.

three embeddings has the lowest error, although by a small margin. Similar results are observed in the TtT metric
in Figure 24b, where the proposed PHLieNet network achieves the highest TtT, although the differences between all
parameter-informed models are minor. Furthermore, as shown by the power spectrum error and the L1 error in the
state histogram in Figures 24c and 24d respectively, PHLieNet consistently demonstrates lower errors, with the three-
embedding variant outperforming the two-embedding variant in three out of four metrics. These results highlight that
PHLieNet effectively captures the dynamics of the Chua circuit and accurately extrapolates in time.

The improved performance of the three-embedding PHLieNet variant compared to its two-embedding counterpart
highlights the importance of selecting an adequate number of anchor embeddings. In this experiment, each anchor
embedding acts as a representative of a distinct dynamical regime in parameter space. Increasing the number of
anchors from two to three enables the interpolation mechanism to capture the transitions more accurately between
different behaviors of Chua’s circuit. This added flexibility allows the hypernetwork to generate more expressive
and well-adapted forecasting models, particularly in regimes where the dynamics change rapidly with respect to the
parameter a. At the same time, the use of only three embeddings compared to four training parameter values ensures
that the model must still interpolate rather than memorize, preserving generalization capabilities. These findings
provide empirical support for the principle of architectural design discussed in Section 2.4, emphasizing the trade-off
between expressiveness and interpolation capacity in the choice of the number of anchor embeddings.

Moving on to the task of parameter extrapolation, we plot the NRMSE error in Figure 25, where we observe a
behavior similar to that seen in the time extrapolation case. Here too, the parameter-informed models exhibit lower
RMSE errors (Figure 26a), as well as lower power spectrum errors (Figure 26c) and L1 histogram errors (Figure 26d).
Among these, the PHLieNet variant with three embeddings achieves the best performance, albeit by a small mar-
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gin. These results indicate that PHLieNet is capable of efficiently extrapolating not only in time but also across the
parametric space.
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Figure 26: Model performance on the Chua oscillator dynamics for extrapolation on unseen parameters (AR-P). (a) RMSE error aggregated over
time. (b) Time-to-Threshold (TtT) metric. (c) Power spectrum error. (d) L1 histogram error.
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Figure 25: Root Mean Squared Error (RMSE) evolution in time for extrapolation on unseen parameters (AR-P).
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In Figure 27, we present visual comparisons between the ground truth attractors of Chua’s circuit and those
reconstructed from the predicted trajectories for several parameter regimes. Similarly, in Figure 28, we evaluate the
model’s ability to generalize to attractors corresponding to previously unseen parameter values. These visual results
complement our earlier quantitative analysis, clearly illustrating that PHLieNet is capable of capturing the intricate
and parameter-dependent dynamics of Chua’s circuit. Despite the substantial differences in attractor shapes driven by
changes in system parameters, the network consistently reproduces the defining features of each attractor, highlighting
the central role that the parameter plays in determining the system’s dynamic behavior.

Figure 27: Extrapolation in time for Chua’s circuit: Comparison of ground truth and predicted attractors across different parameter regimes.

5. Discussion

Modeling dynamical systems that exhibit differentiated responses to varying external stimuli or parameters is
a central challenge with broad practical relevance. Previous approaches often fail to capture the full spectrum of
behaviors within a unified framework. To address this, we propose PHLieNet - Parametric Hypernetwork for Learning
Interpolated Networks, a novel architecture which a) learns a continuous embedding of the parametric space and b)
uses hypernetworks to map this embedding to the parameters of a latent dynamics network. Unlike existing methods,
PHLieNet does not impose theoretical constraints on the class of dynamics that can be represented. By adjusting the
target network’s complexity, the hypernetwork can learn to effectively interpolate within the weight space, enabling
the generation of diverse dynamic behaviors. In our implementation, we adopt a causal dilated TCNN as the target
network.

We demonstrate the efficiency of the proposed framework on four complex parametric dynamical systems that
exhibit nonlinear dynamics: the Van der Pol oscillator, the Lorenz system, the Chua circuit, and the Rössler system.
We benchmark our approach against other state-of-the-art methods, including parameter-agnostic models based on
feedforward neural networks, LSTM RNNs, and causal dilated TCNNs, as well as their adaptations that augment
the hidden state with the parameter. Evaluation metrics span both short-term prediction performance, such as time-
to-threshold and RMSE evolution, and the ability to capture the attractor’s statistics and reproduce the long-term
climate, including power spectrum error and L1 norm error of the histogram. Across all benchmarks, our approach
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Figure 28: Generalization on unseen parameters for Chua’s circuit: Comparison of ground truth and predicted attractors.

consistently outperforms or matches the performance of other models while also exhibiting qualitatively distinct
properties compared to existing methods.

While the use of hypernetworks for modeling complex parametric dynamics remains relatively nascent, the results
presented in this work with PHLieNets demonstrate strong potential. Future research could extend the proposed
method to high-dimensional parametric spaces, where multiple interacting parameters govern the system’s behavior.
Such an extension is conceptually straightforward within our framework and could be achieved through barycentric
interpolation in the parameter space, enabling even more flexible and expressive modeling capabilities.

Another promising direction is to eliminate the interpolation step altogether and directly learn the mapping from
parameters to embedding. In an early version of our work, we explored this using a simple linear network. We
obtained promising preliminary results, although for a more limited range of dynamics compared to this work. A
similar linear mapping approach was also used in [92], which also demonstrated limited generalization in various
dynamical regimes.

Although PHLieNet demonstrates promising results for modeling parametric dynamics, we recognize a potential
bottleneck in our framework. PHLieNet relies on neural networks with smooth activation functions, enabling it to
interpolate over parametric dynamics and weight space, but this relies on the assumption that the dynamics them-
selves vary smoothly with the parameters. In scenarios involving abrupt transitions, such as bifurcations, shocks, or
regime shifts, our framework would require adaptations to capture these discontinuities accurately. Additionally, for
such scenarios, a denser sampling of the parametric space would be necessary to adequately represent these rapid
transitions.

In this work, we used the same set of parameters for training and validation. However, we also tested the ability
of our approach to generalize to unseen parametric dynamics. Generalization to unseen parameters could be fur-
ther improved by evaluating whether using a distinct parameter set for validation would enhance generalization. A
comprehensive analysis of how to select the validation set is left for future work.

The proposed framework poses no limitations on the structure or selection of the target network. The target
network in our framework could be a Neural ODE, a neural operator, a PINN, or any other dynamics propagator.
Improving the proposed approach and benchmarking these different types of target network in PHLieNet while gaining
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a deeper understanding of their differences remain an open area of investigation. It remains unclear which parametric
weight space is more amenable to interpolation, as these methods exhibit distinct characteristics. In our experiments,
we observed that interpolating in the parametric space of temporal CNNs was easier than with RNNs such as LSTMs.

Another interesting avenue for future research is to apply PHLieNet to online adaptive modeling of dynamical
systems. Rather than training the model offline, this approach would account for parameters that change in real-time.
Such a framework would require online anomaly detection, the ability to detect when the dynamic regime has shifted,
and automatic recalibration of the model. Achieving this would likely involve combining PHLieNet with a state
estimation framework.

PHLieNet marks a departure from the reductionist practice of training distinct models for each parameter setting
to a more holistic and unified approach that learns the interplay between parameter and system dynamics. This
framework not only enables interpolation across a wide range of parameter regimes but also opens the door to adaptive
and generalizable modeling of complex dynamical systems. We believe that such a perspective, one that embraces the
structure of the full parametric space, can inspire further research toward more flexible, robust, and insightful models
of the dynamic phenomena that govern real-world systems.

Appendix A. Hypernetwork Architecture Details

We now describe the functional form of the hypernetwork used to generate the parameters of the target forecasting
network, as defined in Equation (18).

Let the target network parameters be denoted by w f , which includes all weights and biases. By flattening and
concatenating these, we obtain a vector of total length |w f |. The goal of the hypernetwork is to generate w f as a
function of the system parameter vector p ∈ RDp .

Appendix A.1. Embedding Interpolation Mechanism

To enable smooth generalization across parameter space, we employ an interpolation mechanism over a fixed
number of learned embedding vectors. Specifically, we define a set of Ne learnable anchor embeddings {e(i)}

Ne
i=1 ⊂ RDe ,

implemented as a standard embedding layer.
For a given input parameter p ∈ [0, 1], we identify two anchor indices, lower and upper, and compute a scalar

interpolation weight α ∈ [0, 1] using linear interpolation:

e(p) = (1 − α) · e(lower) + α · e(upper),

resulting in a continuous embedding e(p) ∈ RDz .
Our method is inherently scalable to high-dimensional parameter vectors (Dp ≫ 1), with no architectural limita-

tions. The main consideration lies in adapting the interpolation mechanism: simple linear interpolation may no longer
suffice. Alternatives such as barycentric interpolation over sparse simplices or kernel-based schemes can be employed
to enable smooth generalization across complex parameter spaces.

Appendix A.2. Weight Generation via MLP

The embedding is then passed through a multi-layer perceptron (MLP) to generate the flattened weight vector of
the target network:

w f = MLP (e(p)) ∈ R|w f |, (A.1)

where the MLP is composed of several hidden layers with activation functions such as SiLU and a final output layer
of size |w f |. This architecture allows efficient and expressive mapping from the embedding space to the parameter
space of the target network.
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Appendix A.3. Training

The entire system consisting of the embedding layer, the MLP-based hypernetwork, and the target temporal fore-
casting model, is trained end-to-end using gradient-based optimization. The hypernetwork remains fully differentiable
with respect to the input parameter p, allowing backpropagation through both the embedding interpolation and the
weight generation process.

This architecture enables dynamic generation of forecasting models tailored to each parameter configuration with-
out requiring retraining for every new value of p. As such, it provides a flexible and efficient approach for modeling
dynamical systems across wide parametric domains.

Appendix B. Hyperparameters of Network Architectures Used

The network architectures implemented for benchmarking in this study are summarized in Table 1. For feedfor-
ward neural networks (FFNNs), we use three hidden layers with 64 neurons each. For LSTMs, a single recurrent layer
with 64 hidden units is employed. The TCNN-CD (Temporal Convolutional Neural Network with Causal Dilations)
is configured with a channel size of 64 and a kernel size of 5. We experiment with input sequence lengths of 16 and
32, corresponding to 3 and 4 layers, respectively.

The target network in PHLieNet is also a TCNN-CD with the same configuration (channel size 64, kernel size
5). The hypernetwork of PHLieNet incorporates a Learned Interpolated Embedding (LIE) layer with an embedding
size of 64. The number of anchor embeddings is tuned between 2 and 4, depending on the specific parameters and
dynamics of the system. This choice is adapted for each system based on the number of parameters observed in the
training data and the complexity of the dynamics: four for the Van der Pol and Rössler systems, three for the Lorenz
system, and two or three for Chua’s circuit.

The weight-generating component of the hypernetwork is a small fully connected network with a single hidden
layer of size 32. We did not observe substantial changes in performance when varying these hyperparameters within
reasonable ranges, suggesting that the core architecture is the primary factor in the model’s effectiveness.

An input sequence length of ISL = 16 was sufficient to achieve satisfactory performance on the Van der Pol
oscillator, Lorenz system, and Rössler system. However, for Chua’s circuit, which exhibits longer periodic behavior,
ISL = 16 proved insufficient, and we therefore increased the input sequence length to ISL = 32.

While additional performance gains could potentially be achieved through further hyperparameter optimization,
such tuning would come at increased computational cost and is beyond the scope of this work.

All networks were trained using truncated backpropagation through time with a batch size of 256 and 6 parallel
data-loading workers. Training was run for a maximum of 1000 epochs. The initial learning rate was set to 10−2, and
reduced by a factor of 0.25 if the minimum validation loss did not decrease by at least 10−4 over 15 consecutive epochs.
If the validation loss failed to improve by this threshold for 30 consecutive epochs, early stopping was triggered to
prevent overfitting.

All input features were standardized using a feature-wise standard scaler. To improve robustness, additive Gaus-
sian noise with standard deviation σnoise was applied during training. All models were trained using the Ranger
optimizer [101].
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