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Some of the most important scientific advances and engineer-
ing designs are founded on the study of complex systems 
that exhibit dynamics spanning multiple spatiotemporal 

scales. Examples include protein dynamics1, morphogenesis2, brain 
dynamics3, climate4, ocean dynamics5 and social systems6. Over the 
last 50 years, simulations have become a key component of these 
studies thanks to a confluence of advances in computing architec-
tures, numerical methods and software. Large-scale simulations 
have led to unprecedented insight, acting as in silico microscopes7 
or telescopes to reveal the dynamics of galaxy formations8. At the 
same time, these simulations have led to the understanding that 
resolving the full range of spatiotemporal scales in such complex 
systems will remain out of reach for the foreseeable future.

In recent years there have been intense efforts to develop effi-
cient simulations that exploit the multiscale character of the sys-
tems under investigation9–12. Multiscale methods rely on judicious 
approximations of the interactions between processes occurring 
over different scales, and a number of potent frameworks have 
been proposed, including the equation-free framework (EFF)10,12–14, 
the heterogeneous multiscale method (HMM)11,15,16 and the Flow 
Averaged Integrator (FLAVOR)17. In these algorithms the system 
dynamics are distinguished into fine and coarse scales or expensive 
and affordable simulations, respectively. Their success depends on 
the separation of scales that are inherent to the system dynamics 
and their capability to capture the transfer of information between 
scales. Effective applications of multiscale methodologies minimize 
the computational effort while maximizing the accuracy of the prop-
agated dynamics. The EFF relies on a few fine-scale simulations that 
are used to acquire, through ‘restricting’, information about the evo-
lution of the coarse-grained quantities of interest. In turn, various 
time-stepping procedures are used to propagate the coarse-grained 

dynamics. The fine-scale dynamics are obtained by judiciously ‘lift-
ing’ the coarse scales to return to the fine-scale description of the 
system and repeat. When the EFF reproduces trajectories of the 
original system, the identified low-order dynamics represent the 
intrinsic system dynamics, also called effective dynamics, inertial 
manifold18,19 or reaction coordinates in molecular kinetics.

While it is undisputed that the EFF, HMM, FLAVOR and 
related frameworks have revolutionized the field of multiscale 
modelling and simulation, we identify two critical issues that cur-
rently limit their potential. First, the accuracy of propagating the 
coarse-grained/latent dynamics hinges on the employed time inte-
grators. Second, the choice of information transfer, particularly 
from coarse- to fine-scale dynamics in lifting, affects the forecasting 
capacity of the methods.

In the present work, these two critical issues are resolved 
through machine learning (ML) algorithms that (1) deploy recur-
rent neural networks (RNNs) with gating mechanisms to evolve the 
coarse-grained dynamics and (2) employ advanced (convolutional, 
or probabilistic) autoencoders (AEs) to transfer in a systematic, 
data-driven manner the information between coarse- and fine-scale 
descriptions.

In recent years, ML algorithms have exploited the ample avail-
ability of data, and powerful computing architectures, to provide 
us with remarkable successes across scientific disciplines20,21. The 
particular elements of our algorithms have been employed in the 
modelling of dynamical systems. AEs have been used to identify a 
latent linear space on the basis of the Koopman framework22, model 
high-dimensional fluid flows23,24 or sample effectively the state space 
in the kinetics of proteins25. More recently, AEs have been coupled 
with dynamic importance sampling26 to accelerate multiscale simu-
lations and investigate the interactions of RAS proteins with a plasma 
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membrane. RNNs with gating mechanisms have been successfully 
applied to a wide range of applications, from speech processing27 to 
complex systems28, but their effectiveness in a multiscale setting has 
yet to be investigated. AEs coupled with RNNs are used in refs. 29–31 
to model fluid flows. In ref. 32, the authors build on the EFF frame-
work, identify a partial differential equation (PDE) on a coarse 
representation by diffusion maps, Gaussian processes or neural net-
works and utilize forward integration in the coarse representation. 
These previous works, however, fail to employ one or more of the 
following mechanisms, in contrast to our framework: consider the 
coarse-scale dynamics23,24, account for their non-Markovian26,32 or 
nonlinear nature22, exploit a probabilistic generative mapping23,29–31 
from the coarse to the fine scale, learn simultaneously the latent 
space and its dynamics in an end-to-end fashion and not sequentia
lly22,23,26,29–32, alternate between micro and macrodynamics22,22,23,29–32 
and scale to high-dimensional systems29,30,32.

Augmenting multiscale frameworks (including EFF, HMM and 
FLAVOR) with state-of-the-art ML algorithms allows for evolu-
tion of the coarse-scale dynamics by taking into account their time 
history and by providing consistent lifting (decoding) and restric-
tion (encoding) operators to transfer information between fine and 
coarse scales. We demonstrate that the proposed framework allows 
for simulations of complex multiscale systems that reduce the com-
putational cost by orders of magnitude to capture spatiotemporal 
scales that would be impossible to resolve with existing computing 
resources.

learning the effective dynamics (leD)
We propose a framework for LED of complex systems, that allows 
for accurate prediction of the system evolution at a considerably 
reduced computational cost.

In the following, the high-dimensional state of a dynamical sys-
tem is given by st ∈ R

ds, and the discrete time dynamics are given by

st+Δt = F(st),

where Δt is the sampling period and F may be nonlinear, deter-
ministic or stochastic. We assume that the state of the system 
at time t can be described by a vector zt ∈ Z, where Z ⊂ R

dz is 
a low-dimensional manifold with dz ≪ ds. To identify this mani-
fold, an encoder EwE

: R
ds → R

dz is utilized, where wE are train-
able parameters, transforming the high-dimensional state st to 
zt = E

wE
(st). In turn, a decoder maps this latent representation 

back to the high-dimensional state, that is, s̃t = D
wD

(zt).
For deterministic systems, the optimal parameters {w⋆

E ,w⋆

D} are 
identified by minimizing the mean squared reconstruction error 
(MSE):

w⋆

E ,w⋆

D = argmin
wE ,wD

⟨ (st − s̃t)2⟩ = argmin
wE ,wD

⟨ {st −D
wD

[E
wE

(st)]}2⟩,

where 〈·〉 denotes the mean. Convolutional neural network33 auto-
encoders (CNN-AEs) that take advantage of the spatial structure of 
the data are embedded into LED.

For stochastic systems, DwD is modelled with a mixture density 
(MD) decoder34. Further details are provided in Supplementary 
Section 1E on the implementation of the MD decoder, along with 
other components embedded in LED: AEs in Supplementary 
Section 1A, variational AEs in Supplementary Section 1B and 
CNNs in Supplementary Section 1C.

We demonstrate the modularity of LED, as it can be coupled with 
a permutation-invariant layer (see details in Supplementary Section 
1D) and utilized later in the modelling of the dynamics of a large 
set of particles governed by the advection–diffusion equation (see 
details in Supplementary Section 3A; hyperparameter tuning of 
LED reported in Supplementary Tables 1 and 2).

As a nonlinear propagator in the low-order manifold (coarse 
scale), an RNN is employed, capturing non-Markovian, memory 
effects by keeping an internal memory state. The RNN is learning a 
forecasting rule

ht = H
wH

(zt, ht−Δt) , z̃t+Δt = R
wR

(ht) ,

where ht ∈ R
dh is an internal hidden memory state, z̃t+Δt is a 

latent-state prediction, HwH and RwR are the hidden-to-hidden 
and the hidden-to-output mappings, and wH and wR are the train-
able parameters of the RNN. One possible implementation of HwH 
and RwR is the long short-term memory (LSTM)35, presented in 
Supplementary Section 1F.

The role of the RNN is twofold. First, it is updating its hidden 
memory state ht, given the current state provided at the input zt and 
the hidden memory state at the previous time-step ht−Δt, tracking 
the history of the low-order state to model non-Markovian dynam-
ics. Second, given the updated ht the RNN forecasts the latent state 
at the next time-step(s) z̃t+Δt. The RNN is trained to minimize 
the forecasting loss ||̃zt+Δt − zt+Δt||

2
2 by backpropagation through 

time36.
The LSTM and the AE, jointly referred to as LED, are trained on 

data from simulations of the fully resolved (or microscale) dynami-
cal system. The two networks can be trained either sequentially 
or together. In the first case, the AE is pretrained to minimize the 
reconstruction loss, and then the LSTM is trained to minimize the 
prediction loss on the latent space (AE-LSTM). In the second case, 
they are seen as one network trying to minimize the sum of recon-
struction and prediction losses (AE-LSTM-end2end). For large, 
high-dimensional systems, the latter approach of end-to-end train-
ing is computationally expensive. After training, LED is employed to 
forecast the dynamics on unseen data by propagating the low-order 
latent state with the RNN and avoiding the computationally expen-
sive simulation of high-dimensional dynamics. We refer to this 
mode of propagation, iteratively propagating only the latent/macro-
dynamics, as Latent-LED. We note that, as non-Markovian models 
are not self-starting, an initial small warm-up period is required, 
feeding the LED with data from the microdynamics.

The LED framework allows for data-driven information transfer 
between coarse and fine scales through the AE. Moreover, it propa-
gates the latent space dynamics without the need to upscale back to 
the high-dimensional state space at every time-step. As is the case 
for any approximate iterative integrator (here the RNN), the ini-
tial model errors will propagate. To mitigate potential instabilities, 
inspired by the equation-free approach10, we propose the multiscale 
forecasting scheme in Fig. 1, alternating between microdynamics for 
Tμ and macrodynamics for Tm. In this way, the approximation error 
can be reduced at the cost of the computational complexity asso-
ciated with evolving the high-dimensional dynamics. We refer to 
this mode of propagation as Multiscale-LED, and the ratio ρ = Tm/Tμ 
as the multiscale ratio. In Multiscale-LED, the interface with the 
high-dimensional state space is enabled only at the time-steps and 
scales of interest. This is in contrast to refs. 37,38, and is easily adapt-
able to the needs of particular applications, thus augmenting the 
arsenal of models developed for multiscale problems.

Training of LED models is performed with the Adam stochas-
tic optimization method39, and validation-based early stopping is 
employed to avoid overfitting. All LED models are implemented 
in PyTorch, mapped to a single Nvidia Tesla P100 graphics pro-
cessing unit, and executed on the XC50 compute nodes of the 
Piz Daint supercomputer at the Swiss National Supercomputing  
Centre (CSCS).

Results
We demonstrate the application of LED in a number of bench-
mark problems and compare its performance with that of existing 
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state-of-the-art algorithms. In Supplementary Section 3D, we pro-
vide additional results on LED applied to alanine dipeptide in water. 
The stochastic dynamics of the molecular system are handled with 
an MD decoder, and an MD-LSTM in the latent space40.

FitzHugh–Nagumo model. LED is employed to capture the 
dynamics of the FitzHugh–Nagumo equations (FHN)41,42. The FHN 
model describes the evolution of an activator u(x, t) = ρac(x, t) and an 
inhibitor density v(x, t) = ρin(x, t) on the domain x ∈ [0, L]:

∂u
∂t = Du ∂2u

∂x2 + u− u3 − v,
∂v
∂t = Dv ∂2v

∂x2 + ϵ(u− α1v− α0).
(1)

The system evolves periodically under two timescales, with the 
activator/inhibitor density acting as the ‘fast’/‘slow’ variable respec-
tively. The bifurcation parameter ϵ = 0.006 controls the difference 
in the timescales. We choose Du = 1, Dv = 4, L = 20, α0 = −0.03 and 
α1 = 2.

Equation (1) is discretized with N = 101 grid points and 
solved using the lattice Boltzmann (LB) method43, with time-step 
δt = 0.005. To facilitate comparison with ref. 32, we employ the LB 
method to gather data starting from six different initial conditions 
to obtain the mesoscopic solution considered here as the fine-scale 
solution. The data are subsampled, retaining every 200th data point, 
that is, the coarse time-step is Δt = 1. Three time series with 451 
points are considered for training, two time series with 451 points 
for validation and 104 data points from a different initial condition 
for testing. For the identification of the latent space, we compare 
principal component analysis (PCA), diffusion maps, feedforward 
AE and CNN-AE, in terms of the MSE of the reconstruction in the 
test data, plotted in Fig. 2a. The MSE is plateauing after dz = 2, and 
the AE and CNN-AE exhibit at least an order of magnitude lower 
MSR compared with PCA and diffusion maps. For this reason, we 
employ an AE with dz = 2 for the LED. The hyperparameters of the 
networks (reported in Supplementary Table 3 along with training 
times) are tuned on the basis of the MSE on the validation data. The 
architecture of the CNN is reported in Supplementary Table 5 and 
depicted in Supplementary Fig. 10.

In Fig. 2b, we compare various propagators in the forecasting of 
the macro- (latent) dynamics, starting from 32 different initial condi-
tions in the test data, up to a horizon of Tf = 8,000. We benchmark an 
AE-LSTM trained end-to-end (AE-LSTM-end2end), an AE-LSTM 
where the AE is pretrained (AE-LSTM), a multilayered percep-
tron (AE-MLP), Reservoir Computers (AE-RC)28,44 and the SINDy 
algorithm (AE-SINDy)45. As a comparison metric, we consider the 
mean normalized absolute difference (MNAD), averaged over the 
32 initial conditions. The definition of the MNAD is provided in 
Supplementary Section 2. The MNAD is computed on the inhibi-
tor density, as the difference between the result of the LB simulation 
v(x, t), considered as ground truth, and the model forecasts v̂. The 
warm-up period for all propagators is set to Twarm = 60. The hyper-
parameters of the networks (reported in Supplementary Tables 4, 6 
and 7, along with the training times) are tuned on the basis of the 
MNAD on the validation data. The LSTM-end2end and the RC show 
the lowest test error, while the variance of the RC is larger. In the 
following, we consider an LSTM-end2end propagator for the LED.

LED is benchmarked against EFF variants32 in the FHN equation 
in Fig. 2c. As a metric for the accuracy, the MNAD is considered 
consistent with ref. 32 to facilitate comparison. The EFF variants32 
are based on the identification of PDEs on the coarse level (CSPDE). 
LED is compared with CSPDEs in forecasting the dynamics of the 
FHN equation starting from an initial condition from the test data 
up to final time Tf = 451. CSPDE variants are utilizing Gaussian 
processes (GP) or neural networks (NN), features of the fine-scale 
dynamics obtained through diffusion maps (F1 to F3) and forward 
integration to propagate the coarse representation in time. LED 
outperforms CSPDE variants by an order of magnitude. In Fig. 2f, 
the latent space of LED is plotted against the attractor of the data 
embedded in the latent space. Even for long time horizons (here 
Tf = 8,000), the LED forecasts remain on the periodic attractor.

Latent-LED propagates the low-order dynamics and upscales 
back to the inhibitor density, forecasting its evolution accurately 
while being 60 times faster than the LB solver. This speed-up can 
be decisive in accelerating simulations and achieving much longer 
time horizons.

In Multiscale-LED, the approximation error of LED decreases at 
the cost of reduced speed-up. This interplay can be seen in Fig. 2d,e.

Encoder Encoder

RNN RNN RNNRNN

Encoder

RNN RNNRNN

EncoderEncoderDecoder

RNN

Macrodynamics (latent) for Tm

Microdynamics for Twarm

Microdynamics for Tµ

Macrodynamics (latent) for Tm

‘Lift’ ‘Restrict’

Fig. 1 | Multiscale-leD. Starting from an initial condition, use the equations/first principles to evolve the high-dimensional dynamics for a short period 
Twarm. During this warm-up period, st is passed through the encoder network. The outputs of the AE are iteratively provided as inputs to the rNN, to warm 
up its hidden state. Next, iteratively, (1) starting from the last latent state zt propagate the latent dynamics for Tm ≫ Twarm with the rNN, (2) lift the latent 
dynamics at t = Twarm + Tm back to the high-dimensional state and (3) starting from this high-dimensional state as an initial condition use the equations/first 
principles to evolve the dynamics for Tμ ≪ Tm.
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Latent-LED (Tμ = 0), and Multiscale-LED, alternating between 
macrodynamics for Tm = 10 and high-dimensional dynamics for 
Tμ, are employed to approximate the evolution and compare it 
against the LB solver in forecasting up to Tf = 8,000 starting from 
32 initial conditions as before. For Tm = Tμ = 10 (ρ = 1), the MNAD 
is reduced from approximately 0.019 to approximately 0.003 com-
pared with Latent-LED. The speed-up, however, is reduced from 60 
to 2. By varying Tm ∈ {50, 100, 200, 1,000}, Multiscale-LED achieves 
a trade-off between speed-up and MNAD.

A prediction of the Latent-LED in the inhibitor density is  
compared against the ground truth in Fig. 2g–i. Additional  
results on the activator density are given in Supplementary 
Section 3B.

Kuramoto–Sivashinsky equation. The Kuramoto–Sivashinsky 
equation (KS)46,47 is a prototypical PDE of fourth order that exhib-
its a very rich range of nonlinear phenomena. In the case of high 
dissipation and small spatial extent L (domain size), the long-term 
dynamics of KS can be represented on a low-dimensional inertial 
manifold18,19 that attracts all neighbouring states at an exponential 
rate after a transient period. LED is employed to learn the low-order 
manifold of the effective dynamics in KS.

The one-dimensional KS equation is given by the PDE

∂u
∂t = −ν

∂4u
∂x4 −

∂2u
∂x2 − u∂u∂x , (2)

on the domain Ω = [0, L] with periodic boundary conditions 
u(0, t) = u(L, t) and ν = 1. The special case L = 22 considered in 
this work is studied extensively in ref. 48, and exhibits a structur-
ally stable chaotic attractor, that is, an inertial manifold where the 
long-term dynamics lie. Equation (2) is discretized with a grid of 
size 64 points and solved using the fourth-order method for stiff 
PDEs introduced in ref. 49 with a time-step of δt = 2.5 × 10−3 start-
ing from a random initial condition. The data are subsampled to 
Δt = 0.25 (coarse time-step of LED). 15 × 103 samples are used for 
training and another 15 × 103 for validation. For testing purposes, 

the process is repeated with a different random seed, generating 
another 15 × 103 samples.

For the identification of a reasonable latent space dimension, we 
compare PCA, AEs and CNNs in terms of the reconstruction MSE 
in the test data as a function of dz, plotted in Fig. 3a. MSE is pla-
teauing after dz = 8, indicating arguably the dimensionality of the 
attractor in agreement with previous studies18,48, and that the CNN 
is superior to the AE, and orders of magnitude better than PCA. 
For this reason, we employ a CNN with dz = 8 for the autoencoding 
part of LED. The hyperparameters of the networks are tuned on the 
basis of the MSE on the validation data, reported in Supplementary 
Tables 8 and 9 with the network training times. The CNN archi-
tecture is provided in Supplementary Table 10, and depicted in 
Supplementary Fig. 12.

In Fig. 3b, we compare various propagators in predicting the 
macrodynamics of LED, starting from 100 test initial condi-
tions, up to Tf = 800 (3,200 time-steps). We employ a CNN-LSTM 
trained end-to-end (CNN-LSTM-end2end), a CNN-LSTM where 
the CNN is pretrained (CNN-LSTM), a multilayered perceptron 
(CNN-MLP), Reservoir Computers (CNN-RC)28,44 and the SINDy 
algorithm (CNN-SINDy)45. As a comparison metric, we consider 
the MNAD, averaged over the 100 initial conditions. The warm-up 
period for all propagators is set to Twarm = 60. The hyperparameters 
(reported in Supplementary Tables 11–13, along with the training 
times) are tuned on the basis of the MNAD on the validation data. 
While the MLP and RC propagators exhibit large errors, the LSTM, 
LSTM-end2end and SINDy show comparable accuracy. In the fol-
lowing, we consider an LSTM propagator for the LED.

Due to the chaoticity of the KS equation, iterative forecasting 
with LED is challenging, as initial errors propagate exponentially. 
To assess whether the iterative forecasting with LED leads to reason-
able, physical predictions, we plot the density of values in the ux–uxx 
space in Fig. 3c. The data originate from a single long trajectory of 
size Tf = 8,000 (32,000 time-steps). We observe that LED, Fig. 3d, is 
able to qualitatively reproduce the density of the simulation.

In Fig. 3e,f, we plot the MNAD, and correlation between fore-
casts of LED and the reference with respect to ρ. In Fig. 3g, the 
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speed-up of LED is plotted against ρ. Latent-LED is able to repro-
duce the long-term ‘climate dynamics’28 and remain at the attractor 
while being more than two orders of magnitude faster compared 
with the micro solver. As ρ is increased, the error is reduced (cor-
relation increased), at the cost of reduced speed-up.

Finally, in Fig. 3h, we compare the performance of Latent-LED 
(CNN-LSTM) with previous studies28,44, which forecast directly on 
the high-dimensional space. Specifically, the Latent-LED matches 
the performance of an LSTM (no dimensionality reduction) but 
shows inferior short-term forecasting ability compared with an RC 
(no dimensionality reduction) forecasting on the high-dimensional 
space. This is expected, as the RC and the LSTM have full informa-
tion about the state. In turn, when the RC is employed on the latent 
space of LED as a macrodynamics propagator, the error grows con-
siderably, and the performance is inferior to the CNN-LSTM case.

A forecast of Latent-LED is provided in Supplementary Fig. 11.

Viscous flow past a cylinder. The flow past a cylinder is a widely 
studied problem in fluids50, which exhibits a rich range of dynami-
cal phenomena such as the transition from laminar to turbulent 
flow at high Reynolds numbers and is used as a benchmark for 
reduced-order modelling approaches. The flow past a cylinder in the 
two-dimensional space is simulated by solving the incompressible 
Navier–Stokes equations with Brinkman penalization to enforce the 
no-slip boundary conditions on the surface of the cylinder51,52. More 
details on the simulation are provided in Supplementary Section 
3D. We consider the application of LED to two Reynolds numbers, 
Re ∈ {100, 1000}. The definition of Re is provided in Supplementary 
equation (22).

The flow is simulated in a cluster with 12 CPU cores, up to 
T = 200, after discarding the initial transients. 250 time-steps dis-
tanced Δt = 0.2 in time (total time T = 50) are used for training, 250 
for validation and the rest for testing purposes. The vortex shedding 
period is T ≈ 2.86 for Re = 100 and T ≈ 2.22 for Re = 1,000.

The state of LED is st ≡ {p, ux, uy,ω} ∈ R
4×512×1024, where 

ω is the vorticity field. For the autoencoding part, LED employs 

CNNs that take advantage of spatial correlations. The architecture 
of the CNN is given in Supplementary Table 14 and depicted in 
Supplementary Fig. 13. The dimension of the latent space is tuned 
on the basis of the performance on the validation dataset to dz = 4 
for Re = 100 and dz = 10 for Re = 1,000.

A prediction of ω by Latent-LED at lead time T = 4 is given in 
Fig. 4. LED captures the flow for both Re ∈ {100, 1,000}. The error 
concentrates mainly around the cylinder, rendering the accurate 
prediction of the drag coefficient challenging. In Fig. 4d,h, the 
latent space of Latent-LED is compared with the transformation of 
the data to the latent space. The predictions stay close to the attrac-
tor even for a very large horizon (T = 20). The Strouhal number St 
(defined in Supplementary equation (23)) describes the periodic 
vortex shedding at the wake of the cylinder. By estimating the domi-
nant frequency of the latent state using a Fourier analysis, we find 
that LED reproduces exactly the St of the system dynamics for both 
Re ∈ {100, 1,000} cases.

The LSTM propagator of LED is benchmarked against SINDy 
and RC in predicting the dynamics, starting from 10 initial condi-
tions randomly sampled from the test data for a prediction hori-
zon of T = 20 (100 time-steps). The hyperparameters (reported 
in Supplementary Tables 15–17, along with the training times) 
are tuned on the basis of the MNAD on the validation data. The 
logarithm of the MNAD is given in Fig. 5a for Re = 100 and Fig. 
5e for Re = 1,000. For the Re = 100 case, the LSTM exhibits lower 
MNAD and lower variance than RC and SINDy. For the challeng-
ing Re = 1,000 scenario, LSTM and RC exhibit lower MNAD than 
SINDy, with the LSTM being more robust (lower variance).

In the Re = 100 case, Latent-LED recovers a periodic nonlinear 
mode in the latent space and can forecast the dynamics accurately, 
as illustrated in Fig. 4. In this case, approaches based on the Galerkin 
method or dynamic mode decomposition construct reduced-order 
models with six to eight degrees of freedom53 that capture the most 
energetic spatiotemporal modes. In contrast, the latent space of 
LED in the Re = 100 case has a dimensionality of dz = 4. In the chal-
lenging Re = 1,000 scenario, LED with dz = 10 can capture accurately  
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the characteristic vortex street, and long-term dynamics. 
Reduced-order models for flows past a cylinder have been so far 
limited to periodic laminar flows of the order of Re = 100, whereas 
this study exceeds these flows by an order of magnitude.

Starting from four initial conditions randomly sampled from 
the test data, six LED variants (Latent-LED, Multiscale-LED with 
Tμ = 0.4, Tm ∈ {0.4, 0.8, 1.2, 2, 4} for Re = 100, and Latent-LED, 
Multiscale-LED with Tμ = 1.6, Tm ∈ {0.8, 1.6, 3.2, 6.4, 12.8} for 
Re = 1,000) are tested on predicting the dynamics of the flow up to 
Tf = 20, after Twarm = 2. The MNAD is plotted in Fig. 5b for Re = 100, 
and Fig. 5f for Re = 1,000. The speed-up is plotted in Fig. 5d for 
Re = 100, and Fig. 5h for Re = 1,000. The Latent-LED is two orders 
of magnitude faster than the flow solver while exhibiting MNAD 
errors of 0.02 and 0.04 for Re = 100 and Re = 1,000, respectively. By 
alternating between macro and micro, the error is reduced at the 
cost of decreased speed-up.

In Fig. 5c,g, the relative error on the drag coefficient Cd (defined 
in Supplementary equation (28)) is plotted as a function of ρ. 
Latent-LED exhibits a relative error of 0.04, which is reduced to 
approximately 0.02 for ρ = 1. For Re = 1,000, as we observe in  
Fig. 4, the prediction error of LED concentrates around the cylinder, 
which leads to an inaccurate computation of the drag. Even though 
Multiscale-LED reduces this error, it still remains of the order  
of 0.15.

Discussion
We have presented a novel framework for LED and accelerat-
ing the simulations of multiscale (stochastic or deterministic) 
complex dynamical systems. Our work relies on augmenting the 
equation-free formalism with state-of-the-art ML methods.

The LED framework is tested on a number of benchmark 
problems. In systems where evolving the high-dimensional state 
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dynamics is computationally expensive, LED accelerates the sim-
ulation by propagating on the latent space and upscaling to the 
high-dimensional states with the probabilistic, generative MD 
or deterministic convolutional decoder. This comes at the cost of 
training the networks, a process that is performed once offline. The 
trained model can forecast the dynamics starting from any arbitrary 
initial condition.

The efficiency of LED was evaluated in forecasting the FHN dynam-
ics, achieving an order of magnitude lower approximation error com-
pared with other equation-free approaches while being two orders of 
magnitude faster than the LB solver. We demonstrated that the proposed 
framework identifies the effective dynamics of the KS equation with 
L = 22, capturing the long-term behaviour (climate dynamics), achiev-
ing a speed-up of S ≈ 100. Furthermore, LED captures the long-term 
dynamics of a flow past a cylinder in Re = 100 and Re = 1,000 accu-
rately while being two orders of magnitude faster than a flow solver. 
In Supplementary Information, we demonstrate that LED can unravel 
and forecast the stochastic collective dynamics of 1,000 particles fol-
lowing Brownian motion subject to advection and diffusion in the 
three-dimensional space (Supplementary Section 3A). In our recent 
work40 (briefly described in Supplementary Section 3E), we show that 
LED can be applied to learn the stochastic dynamics of molecular sys-
tems. We note that the present method is readily applicable to all prob-
lems where equation-free, HMM and FLAVOR methodologies have  
been applied.

In summary, LED identifies and propagates the effective dynam-
ics of dynamical systems with multiple spatiotemporal scales, 
providing considerable computational savings. Moreover, LED pro-
vides a systematic way of trading between speed-up and accuracy 
for a multiscale system by switching between the propagation of the 
latent dynamics and evolution of the original equations, iteratively 
correcting the statistical error at the cost of reduced speed-up.

The LED does not currently contain any mechanism to decide 
when to upscale the latent space dynamics. This is an active area 
of investigation. We do not expect LED to generalize to dynamical 
regions markedly different from those represented in the training 
data. Further research efforts will address this issue by adapting the 
training procedure.

The present methodology can be deployed in problems described 
by first principles as well as in problems where data are available 
only for either the macro- or microscale descriptions of the system. 
Ongoing work is concerned with the extension of the LED meth-
odology to experimental settings and real-world data. We envision 
how experimental snapshots may inform the latent-space dynamics 
through AEs, but the challenge remains on how to reinitialize the 
experiments from the decoded microscale description. Moreover, 
real-world applications often entail noisy data. We note that LED 
can handle stochastic systems efficiently, as has been demonstrated 
in its application of accelerating molecular simulations40.

In summary, LED creates unique algorithmic alloys between 
data-driven and first-principles models and opens new horizons for 
the accurate and efficient prediction of complex multiscale systems.

Methods
The methods for this paper are described in Supplementary Section I.

Data availability
All the data analysed in this paper were produced with open-source software 
described in the code availability statement. Reference data and the scripts used to 
produce the data figures, as well as instructions to launch training and inference 
(evaluation of trained models) scripts for LED, are available on the GitHub 
repository: https://github.com/cselab/LED.

Code availability
Simulations of the KS equation have been performed with a spectral fourth-order 
solver for stiff PDEs developed in Python. Simulation of the FHN equation has 
been performed with an LB method developed in Python. The LED software is 

implemented in Python, utilizing the PyTorch library for the neural networks. All 
codes are made readily available in the GitHub repository: https://github.com/
cselab/LED. Direct numerical simulations were performed with the flow solver 
CubismUP 2D: https://github.com/cselab/CubismUP_2D.
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