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Hybrid LSTM - MSM





Use MSM in attractor regions underrepresented in the training data or near attractor boundaries

·zt = {
LSTMW(zt, zt−1, zt−2, …) if ptrain(zt) ≥ θ
MSMζ,c(zt) if ptrain(zt) < θ

[1] AJ Majda, J Harlim, Filtering complex turbulent systems, Cambridge University Press, 2012

[2] ZY Wan, TP Sapsis, Reduced-space Gaussian Process Regression for data-driven probabilistic forecast of chaotic dynamical systems, Physica D: Nonlinear Phenomena, 2017



Results on KS - Comparison with Gaussian Process Regression (GPR)

RMSE evolution in time of the most 
energetic mode


(averaged over 1000 initial conditions)

LSTM

GPR

MSM

GPR-MSM

LSTM-MSM

Root mean square error:

13

RMSE(zk) =
1
V

V

∑
i=1

(zi
k − z̃i

k)2

Total number of initial conditions (IC)V
Mode numberk
IC indexi
True state of mode  starting from IC k izi

k
Predicted state of mode  starting from IC k iz̃i

k

PR Vlachas, W Byeon, Z Wan, T Sapsis, P Koumoutsakos, 
Data-driven forecasting of high-dimensional chaotic systems with 
long short-term memory networks, Proc. Roy. Soc. A , 2018 
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Lorenz 96, , full state information & parallelismF = 8
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• C Theodoropoulos, YH Qian, IG Kevrekidis, Coarse stability and bifurcation analysis using 
time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci., 2000 


• CW Gear, IG Kevrekidis, C Theodoropoulos, Coarse integration/bifurcation analysis via 
microscopic simulators: micro-Galerkin methods, Computers and Chemical Engineering, 2002

AND MANY MANY MORE …
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Cylinder at  (LED )Re = 1000 dz = 10
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Comparisons of Latent Propagators
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- system properties into architecture (e.g. energy conservation, 

divergence free velocity field, etc.)
- Adaptive resolution (AMR)

• Applications
- Scale to 3D fluid flows
- Employ on RL for data-efficiency
- AdaLED on real world experiments (challenge: how to reinitialise 

experiment from micro-scale)
- Climate data
- Digital twin paradigm
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